CLI¶
Anomalib CLI.
- class anomalib.utils.cli.AnomalibCLI(model_class: ~typing.Optional[~typing.Union[~typing.Type[~pytorch_lightning.core.module.LightningModule], ~typing.Callable[[...], ~pytorch_lightning.core.module.LightningModule]]] = None, datamodule_class: ~typing.Optional[~typing.Union[~typing.Type[~pytorch_lightning.core.datamodule.LightningDataModule], ~typing.Callable[[...], ~pytorch_lightning.core.datamodule.LightningDataModule]]] = None, save_config_callback: ~typing.Optional[~typing.Type[~pytorch_lightning.cli.SaveConfigCallback]] = <class 'pytorch_lightning.cli.SaveConfigCallback'>, save_config_kwargs: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, trainer_class: ~typing.Union[~typing.Type[~pytorch_lightning.trainer.trainer.Trainer], ~typing.Callable[[...], ~pytorch_lightning.trainer.trainer.Trainer]] = <class 'pytorch_lightning.trainer.trainer.Trainer'>, trainer_defaults: ~typing.Optional[~typing.Dict[str, ~typing.Any]] = None, seed_everything_default: ~typing.Union[bool, int] = True, parser_kwargs: ~typing.Optional[~typing.Union[~typing.Dict[str, ~typing.Any], ~typing.Dict[str, ~typing.Dict[str, ~typing.Any]]]] = None, subclass_mode_model: bool = False, subclass_mode_data: bool = False, args: ~typing.Optional[~typing.Union[~typing.List[str], ~typing.Dict[str, ~typing.Any], ~jsonargparse.namespace.Namespace]] = None, run: bool = True, auto_configure_optimizers: bool = True, **kwargs: ~typing.Any)[source]¶
Bases:
LightningCLI
Implementation of a fully configurable CLI tool for anomalib.
The advantage of this tool is its flexibility to configure the pipeline from both the CLI and a configuration file (.yaml or .json). It is even possible to use both the CLI and a configuration file simultaneously. For more details, the reader could refer to PyTorch Lightning CLI documentation.
Receives as input pytorch-lightning classes (or callables which return pytorch-lightning classes), which are called / instantiated using a parsed configuration file and / or command line args.
Parsing of configuration from environment variables can be enabled by setting
parser_kwargs={"default_env": True}
. A full configuration yaml would be parsed fromPL_CONFIG
if set. Individual settings are so parsed from variables named for examplePL_TRAINER__MAX_EPOCHS
.For more info, read the CLI docs.
Warning
LightningCLI
is in beta and subject to change.- Parameters:
model_class – An optional
LightningModule
class to train on or a callable which returns aLightningModule
instance when called. IfNone
, you can pass a registered model with--model=MyModel
.datamodule_class – An optional
LightningDataModule
class or a callable which returns aLightningDataModule
instance when called. IfNone
, you can pass a registered datamodule with--data=MyDataModule
.save_config_callback – A callback class to save the config.
save_config_kwargs – Parameters that will be used to instantiate the save_config_callback.
trainer_class – An optional subclass of the
Trainer
class or a callable which returns aTrainer
instance when called.trainer_defaults – Set to override Trainer defaults or add persistent callbacks. The callbacks added through this argument will not be configurable from a configuration file and will always be present for this particular CLI. Alternatively, configurable callbacks can be added as explained in the CLI docs.
seed_everything_default – Number for the
seed_everything()
seed value. Set to True to automatically choose a seed value. Setting it to False will avoid callingseed_everything
.parser_kwargs – Additional arguments to instantiate each
LightningArgumentParser
.subclass_mode_model – Whether model can be any subclass of the given class.
subclass_mode_data –
Whether datamodule can be any subclass of the given class.
args – Arguments to parse. If
None
the arguments are taken fromsys.argv
. Command line style arguments can be given in alist
. Alternatively, structured config options can be given in adict
orjsonargparse.Namespace
.run – Whether subcommands should be added to run a
Trainer
method. If set toFalse
, the trainer and model classes will be instantiated only.