Source code for datumaro.plugins.data_formats.yolo.base

# Copyright (C) 2019-2023 Intel Corporation
#
# SPDX-License-Identifier: MIT

from __future__ import annotations

import os.path as osp
from collections import OrderedDict
from typing import Dict, Iterator, List, Optional, Type, TypeVar, Union

import yaml

from datumaro.components.annotation import Annotation, AnnotationType, Bbox, LabelCategories
from datumaro.components.dataset_base import CategoriesInfo, DatasetBase, DatasetItem, SubsetBase
from datumaro.components.errors import (
    DatasetImportError,
    InvalidAnnotationError,
    UndeclaredLabelError,
)
from datumaro.components.importer import ImportContext
from datumaro.components.media import Image, ImageFromFile
from datumaro.util.image import (
    DEFAULT_IMAGE_META_FILE_NAME,
    IMAGE_EXTENSIONS,
    ImageMeta,
    load_image_meta_file,
)
from datumaro.util.meta_file_util import has_meta_file, parse_meta_file
from datumaro.util.os_util import extract_subset_name_from_parent, find_files, split_path

from .format import YoloLoosePath, YoloPath, YoloUltralyticsPath

T = TypeVar("T")

__all__ = ["YoloStrictBase", "YoloLooseBase", "YoloUltralyticsBase"]


[docs] def localize_path(path: str) -> str: """ Removes the "data/" prefix from the path """ path = osp.normpath(path.strip()).replace("\\", "/") default_base = "data/" if path.startswith(default_base): path = path[len(default_base) :] return path
# TODO: Need to clean this dirty structure (SubsetBase has _Subset). class _Subset(DatasetBase): def __init__( self, subset_name: str, path: str, items: OrderedDict[str, str], categories: CategoriesInfo, image_info: ImageMeta, ): super().__init__() self._subset_name = subset_name self._path = path self._items = items self._categories = categories self._image_info = image_info def __iter__(self) -> Iterator[DatasetItem]: for item_id in self._items: item = self._get(item_id) if item is not None: yield item def __len__(self): return len(self._items) def categories(self): return self._parent.categories() def _get(self, item_id: str) -> Optional[DatasetItem]: item = self._items.get(item_id) if not isinstance(item, str): return None try: image_size = self._image_info.get(item_id) image = Image.from_file(path=osp.join(self._path, item), size=image_size) anno_path = osp.splitext(image.path)[0] + ".txt" annotations = self._parse_annotations( anno_path, image, label_categories=self._categories[AnnotationType.label], ) item = DatasetItem( id=item_id, subset=self._subset_name, media=image, annotations=annotations ) return item except (UndeclaredLabelError, InvalidAnnotationError) as e: self._ctx.error_policy.report_annotation_error(e, item_id=(item_id, self._subset_name)) except Exception as e: self._ctx.error_policy.report_item_error(e, item_id=(item_id, self._subset_name)) return None @classmethod def _parse_annotations( cls, anno_path: str, image: ImageFromFile, *, label_categories: LabelCategories, ) -> List[Annotation]: lines = [] with open(anno_path, "r", encoding="utf-8") as f: for line in f: line = line.strip() if line: lines.append(line) annotations = [] if lines: # Use image info as late as possible to avoid unnecessary image loading if image.size is None: raise DatasetImportError(f"Can't find image info for '{localize_path(image.path)}'") image_height, image_width = image.size for idx, line in enumerate(lines): parts = line.split() if len(parts) != 5: raise InvalidAnnotationError( f"Unexpected field count {len(parts)} in the bbox description. " "Expected 5 fields (label, xc, yc, w, h)." ) label_id, xc, yc, w, h = parts label_id = cls._parse_field(label_id, int, "bbox label id") if label_id not in label_categories: raise UndeclaredLabelError(str(label_id)) w = cls._parse_field(w, float, "bbox width") h = cls._parse_field(h, float, "bbox height") x = cls._parse_field(xc, float, "bbox center x") - w * 0.5 y = cls._parse_field(yc, float, "bbox center y") - h * 0.5 annotations.append( Bbox( x * image_width, y * image_height, w * image_width, h * image_height, label=label_id, id=idx, group=idx, ) ) return annotations @classmethod def _parse_field(cls, value: str, desired_type: Type[T], field_name: str) -> T: try: return desired_type(value) except Exception as e: raise InvalidAnnotationError( f"Can't parse {field_name} from '{value}'. Expected {desired_type}" ) from e
[docs] class YoloStrictBase(SubsetBase): def __init__( self, config_path: str, image_info: Union[None, str, ImageMeta] = None, *, subset: Optional[str] = None, ctx: Optional[ImportContext] = None, **kwargs, ) -> None: super().__init__(subset=subset, ctx=ctx) if not osp.isfile(config_path): raise DatasetImportError(f"Can't read dataset descriptor file '{config_path}'") rootpath = osp.dirname(config_path) self._path = rootpath self._image_info = self.parse_image_info(rootpath, image_info) config = YoloPath._parse_config(config_path) names_path = config.get("names") if not names_path: raise InvalidAnnotationError("Failed to parse names file path from config") self._categories = { AnnotationType.label: self._load_categories( osp.join(self._path, localize_path(names_path)) ) } # The original format is like this: # # classes = 2 # train = data/train.txt # valid = data/test.txt # names = data/obj.names # backup = backup/ # # To support more subset names, we disallow subsets # called 'classes', 'names' and 'backup'. subsets = {k: v for k, v in config.items() if k not in YoloPath.RESERVED_CONFIG_KEYS} self._subsets: Dict[str, self._Subset] = {} for subset_name, list_path in subsets.items(): if subset_name != subset: continue list_path = osp.join(self._path, localize_path(list_path)) if not osp.isfile(list_path): raise InvalidAnnotationError(f"Can't find '{subset_name}' subset list file") with open(list_path, "r", encoding="utf-8") as f: items = OrderedDict( (self.name_from_path(p), localize_path(p)) for p in f if p.strip() ) subset = _Subset( subset_name=subset_name, path=self._path, items=items, categories=self._categories, image_info=self._image_info, ) self._subsets[subset_name] = subset
[docs] @staticmethod def parse_image_info( rootpath: str, image_info: Optional[Union[str, ImageMeta]] = None ) -> ImageMeta: assert image_info is None or isinstance(image_info, (str, dict)) if image_info is None: image_info = osp.join(rootpath, DEFAULT_IMAGE_META_FILE_NAME) if not osp.isfile(image_info): image_info = {} if isinstance(image_info, str): image_info = load_image_meta_file(image_info) return image_info
[docs] @classmethod def name_from_path(cls, path: str) -> str: """ Obtains <image name> from the path like [data/]<subset>_obj/<image_name>.ext <image name> can be <a/b/c/filename>, so it is more involved than just calling "basename()". """ path = localize_path(path) parts = split_path(path) if 1 < len(parts) and not osp.isabs(path): path = osp.join(*parts[1:]) # pylint: disable=no-value-for-parameter return osp.splitext(path)[0]
@staticmethod def _load_categories(names_path): if has_meta_file(osp.dirname(names_path)): return LabelCategories.from_iterable(parse_meta_file(osp.dirname(names_path)).keys()) label_categories = LabelCategories() with open(names_path, "r", encoding="utf-8") as f: for label in f: label = label.strip() if label: label_categories.add(label) return label_categories def __iter__(self) -> Iterator[DatasetItem]: subsets = self._subsets pbars = self._ctx.progress_reporter.split(len(subsets)) for pbar, (subset_name, subset) in zip(pbars, subsets.items()): for item in pbar.iter(subset, desc=f"Importing '{subset_name}'"): yield item for ann in item.annotations: self._ann_types.add(ann.type) def __len__(self): return sum(len(s) for s in self._subsets.values())
[docs] def get_subset(self, name): return self._subsets[name]
@property def is_stream(self) -> bool: return True
[docs] class YoloLooseBase(SubsetBase): META_FILE = YoloLoosePath.NAMES_FILE def __init__( self, config_path: str, image_info: Union[None, str, ImageMeta] = None, urls: Optional[List[str]] = None, *, subset: Optional[str] = None, ctx: Optional[ImportContext] = None, ) -> None: super().__init__(subset=subset, ctx=ctx) if not osp.isdir(config_path): raise DatasetImportError(f"{config_path} should be a directory.") if not urls: raise DatasetImportError( f"`urls` should be specified for {self.__class__.__name__}, " f"if you want to import a dataset with using this {self.__class__.__name__} directly. " "In most case, it happens by giving an incorrect format name to the import interface. " "Please consider to import your dataset with this format name, 'yolo', " "such as `Dataset.import_from(..., format='yolo')`." ) rootpath = self._get_rootpath(config_path) self._image_info = YoloStrictBase.parse_image_info(rootpath, image_info) # Init label categories label_categories = self._load_categories(osp.join(rootpath, self.META_FILE)) self._categories = {AnnotationType.label: label_categories} self._urls = urls self._img_files = self._load_img_files(rootpath) def __iter__(self) -> Iterator[DatasetItem]: label_categories = self._categories.get(AnnotationType.label) if label_categories is None: raise DatasetImportError("label_categories should be not None.") pbar = self._ctx.progress_reporter for url in pbar.iter(self._urls, desc=f"Importing '{self._subset}'"): try: fname = self._get_fname(url) img = Image.from_file(path=self._img_files[fname]) anns = self._parse_annotations( url, img, label_categories=label_categories, ) yield DatasetItem(id=fname, subset=self._subset, media=img, annotations=anns) for ann in anns: self._ann_types.add(ann.type) except Exception as e: self._ctx.error_policy.report_item_error(e, item_id=(fname, self._subset)) def __len__(self) -> int: return len(self._urls) def _get_rootpath(self, config_path: str) -> str: return config_path def _load_categories(self, names_path: str) -> LabelCategories: return YoloStrictBase._load_categories(names_path) def _get_fname(self, fpath: str) -> str: return osp.splitext(osp.basename(fpath))[0] def _load_img_files(self, rootpath: str) -> Dict[str, str]: return { self._get_fname(img_file): img_file for img_file in find_files(rootpath, IMAGE_EXTENSIONS, recursive=True, max_depth=2) if extract_subset_name_from_parent(img_file, rootpath) == self._subset } def _parse_annotations( self, anno_path: str, image: ImageFromFile, label_categories: LabelCategories ) -> List[Annotation]: return _Subset._parse_annotations( anno_path=anno_path, image=image, label_categories=label_categories ) def _parse_field(self, value: str, desired_type: Type[T], field_name: str) -> T: return _Subset._parse_field(value=value, desired_type=desired_type, field_name=field_name) @property def is_stream(self) -> bool: return True
[docs] class YoloUltralyticsBase(YoloLooseBase): META_FILE = YoloUltralyticsPath.META_FILE def __init__( self, config_path: str, image_info: Union[None, str, ImageMeta] = None, urls: Optional[List[str]] = None, **kwargs, ) -> None: super().__init__(config_path, image_info, urls, **kwargs) def _load_categories(self, names_path: str) -> LabelCategories: if has_meta_file(osp.dirname(names_path)): return LabelCategories.from_iterable(parse_meta_file(osp.dirname(names_path)).keys()) label_categories = LabelCategories() with open(names_path, "r") as fp: loaded = yaml.safe_load(fp.read()) if isinstance(loaded["names"], list): label_names = loaded["names"] elif isinstance(loaded["names"], dict): label_names = list(loaded["names"].values()) else: raise DatasetImportError(f"Can't read dataset category file '{names_path}'") for label_name in label_names: label_categories.add(label_name) return label_categories