# Vgg Face2 CSV ## Format specification Vgg Face 2 is a dataset for face-recognition task, the repository with some information and sample data of Vgg Face 2 is available [here](https://github.com/ox-vgg/vgg_face2) Supported types of annotations: - `Bbox` - `Points` - `Label` Format doesn't support any attributes for annotations objects. ## Import Vgg Face2 dataset A Datumaro project with a Vgg Face 2 dataset can be created in the following way: ``` datum project create datum project import -f vgg_face2 ``` > Note: if you use `datum project import` then should not be a > subdirectory of directory with Datumaro project, see more information about > it in the [docs](../../command-reference/context/sources.md#add-dataset). And you can also load Vgg Face 2 through the Python API: ```python import datumaro as dm dataset = dm.Dataset.import_from('', format='vgg_face2') ``` For successful importing of Vgg Face2 face the input directory with dataset should has the following structure: ``` vgg_face2_dataset/ ├── labels.txt # labels mapping ├── bb_landmark │ ├── loose_bb_test.csv # information about bounding boxes for test subset │ ├── loose_bb_train.csv │ ├── loose_bb_.csv │ ├── loose_landmark_test.csv # landmark points information for test subset │ ├── loose_landmark_train.csv │ └── loose_landmark_.csv ├── test │ ├── n000001 # directory with images for n000001 label │ │ ├── 0001_01.jpg │ │ ├── 0001_02.jpg │ │ ├── ... │ ├── n000002 # directory with images for n000002 label │ │ ├── 0002_01.jpg │ │ ├── 0003_01.jpg │ │ ├── ... │ ├── ... ├── train │ ├── n000004 │ │ ├── 0004_01.jpg │ │ ├── 0004_02.jpg │ │ ├── ... │ ├── ... └── ├── ... ``` ## Export Vgg Face2 dataset Datumaro can convert a Vgg Face2 dataset into any other format [Datumaro supports](/docs/data-formats/formats/index.rst). There is few examples how to do it: ``` # Using `convert` command datum convert -if vgg_face2 -i \ -f voc -o -- --save-media # Using Datumaro project datum project create datum project import -f vgg_face2 datum project export -f yolo -o ``` > Note: to get the expected result from the conversion, the output format > should support the same types of annotations (one or more) as Vgg Face2 > (`Bbox`, `Points`, `Label`) And also you can convert your Vgg Face2 dataset using Python API ```python import datumaro as dm vgg_face2_dataset = dm.Dataset.import_from('', format='open_images', save_media=True) ``` > Note: some formats have extra export options. For particular format see the > [docs](/docs/data-formats/formats/index.rst) to get information about it. ## Export dataset to the Vgg Face2 format If you have dataset in some format and want to convert this dataset into the Vgg Face2, ensure that this dataset contains `Bbox` or/and `Points` or/and `Label` and use Datumaro to perform conversion. There is few examples: ``` # Using convert command datum convert -if wider_face -i \ -f vgg_face2 -o # Using Datumaro project datum project create datum project import -f wider_face datum project export -f vgg_face2 -o -- --save-media --image-ext '.png' ``` > Note: `vgg_face2` format supports only one `Bbox` per image Extra options for exporting to Vgg Face2 format: - `--save-media` allow to export dataset with saving media files (by default `False`) - `--image-ext ` allow to specify image extension for exporting the dataset (by default `.png`) - `--save-dataset-meta` - allow to export dataset with saving dataset meta file (by default `False`)