Source code for otx.algorithms.anomaly.adapters.anomalib.callbacks.iteration_timer

"""Timer for logging iteration time for train, val, and test phases."""
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
#

from collections import defaultdict
from time import time
from typing import Any, Dict

from pytorch_lightning import Callback, LightningModule, Trainer
from pytorch_lightning.utilities.types import STEP_OUTPUT


[docs] class IterationTimer(Callback): """Timer for logging iteration time for train, val, and test phases.""" def __init__( self, prog_bar: bool = True, on_step: bool = True, on_epoch: bool = True, ) -> None: super().__init__() self.prog_bar = prog_bar self.on_step = on_step self.on_epoch = on_epoch self.start_time: Dict[str, float] = defaultdict(float) self.end_time: Dict[str, float] = defaultdict(float)
[docs] def on_train_epoch_start(self, trainer: Trainer, pl_module: LightningModule) -> None: """Reset timer before every train epoch starts.""" self.start_time.clear() self.end_time.clear()
[docs] def on_validation_epoch_start(self, trainer: Trainer, pl_module: LightningModule) -> None: """Reset timer before every validation epoch starts.""" self.start_time.clear() self.end_time.clear()
[docs] def on_test_epoch_start(self, trainer: Trainer, pl_module: LightningModule) -> None: """Reset timer before every test epoch starts.""" self.start_time.clear() self.end_time.clear()
def _on_batch_start( self, pl_module: LightningModule, phase: str, batch_size: int, ) -> None: self.start_time[phase] = time() if not self.end_time[phase]: return name = f"{phase}/data_time" data_time = self.start_time[phase] - self.end_time[phase] pl_module.log( name=name, value=data_time, prog_bar=self.prog_bar, on_step=self.on_step, on_epoch=self.on_epoch, batch_size=batch_size, ) def _on_batch_end( self, pl_module: LightningModule, phase: str, batch_size: int, ) -> None: if not self.end_time[phase]: self.end_time[phase] = time() return name = f"{phase}/iter_time" curr_end_time = time() iter_time = curr_end_time - self.end_time[phase] self.end_time[phase] = curr_end_time pl_module.log( name=name, value=iter_time, prog_bar=self.prog_bar, on_step=self.on_step, on_epoch=self.on_epoch, batch_size=batch_size, )
[docs] def on_train_batch_start( self, trainer: Trainer, pl_module: LightningModule, batch: Any, # noqa: ANN401 batch_idx: int, ) -> None: """Log iteration data time on the training batch start.""" self._on_batch_start( pl_module=pl_module, phase="train", batch_size=batch["image"].shape[0], )
[docs] def on_train_batch_end( self, trainer: Trainer, pl_module: LightningModule, outputs: STEP_OUTPUT, batch: Any, # noqa: ANN401 batch_idx: int, ) -> None: """Log iteration time on the training batch end.""" self._on_batch_end( pl_module=pl_module, phase="train", batch_size=batch["image"].shape[0], )
[docs] def on_validation_batch_start( self, trainer: Trainer, pl_module: LightningModule, batch: Any, # noqa: ANN401 batch_idx: int, dataloader_idx: int = 0, ) -> None: """Log iteration data time on the validation batch start.""" self._on_batch_start( pl_module=pl_module, phase="validation", batch_size=batch["image"].shape[0], )
[docs] def on_validation_batch_end( self, trainer: Trainer, pl_module: LightningModule, outputs: STEP_OUTPUT, batch: Any, # noqa: ANN401 batch_idx: int, dataloader_idx: int = 0, ) -> None: """Log iteration time on the validation batch end.""" self._on_batch_end( pl_module=pl_module, phase="validation", batch_size=batch["image"].shape[0], )
[docs] def on_test_batch_start( self, trainer: Trainer, pl_module: LightningModule, batch: Any, # noqa: ANN401 batch_idx: int, dataloader_idx: int = 0, ) -> None: """Log iteration data time on the test batch start.""" self._on_batch_start( pl_module=pl_module, phase="test", batch_size=batch["image"].shape[0], )
[docs] def on_test_batch_end( self, trainer: Trainer, pl_module: LightningModule, outputs: STEP_OUTPUT, batch: Any, # noqa: ANN401 batch_idx: int, dataloader_idx: int = 0, ) -> None: """Log iteration time on the test batch end.""" self._on_batch_end( pl_module=pl_module, phase="test", batch_size=batch["image"].shape[0], )