Source code for otx.algorithms.detection.tools.detection_semisl_sample

"""Sample Code of otx training for detection."""

# Copyright (C) 2021-2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions
# and limitations under the License.

import argparse
import sys
from random import randint

import numpy as np

from otx.algorithms.common.utils import get_task_class
from otx.api.configuration.helper import create
from otx.api.entities.annotation import (
    Annotation,
    AnnotationSceneEntity,
    AnnotationSceneKind,
    NullAnnotationSceneEntity,
)
from otx.api.entities.dataset_item import DatasetItemEntity
from otx.api.entities.datasets import DatasetEntity
from otx.api.entities.image import Image
from otx.api.entities.inference_parameters import InferenceParameters
from otx.api.entities.label import Domain, LabelEntity
from otx.api.entities.label_schema import LabelSchemaEntity
from otx.api.entities.model import ModelEntity
from otx.api.entities.model_template import parse_model_template
from otx.api.entities.optimization_parameters import OptimizationParameters
from otx.api.entities.resultset import ResultSetEntity
from otx.api.entities.scored_label import ScoredLabel
from otx.api.entities.shapes.rectangle import Rectangle
from otx.api.entities.subset import Subset
from otx.api.entities.task_environment import TaskEnvironment
from otx.api.usecases.tasks.interfaces.export_interface import ExportType
from otx.api.usecases.tasks.interfaces.optimization_interface import OptimizationType
from otx.utils.logger import get_logger

logger = get_logger()


[docs] def parse_args(): """Parse function for getting model template & check export.""" parser = argparse.ArgumentParser(description="Sample showcasing the new API") parser.add_argument("template_file_path", help="path to template file") parser.add_argument("--export", action="store_true") return parser.parse_args()
colors = dict(red=(255, 0, 0), green=(0, 255, 0))
[docs] def load_test_dataset(): """Load Sample dataset for detection.""" def gen_image(resolution, x1, y1, x2, y2, color): width, height = resolution image = np.full([height, width, 3], fill_value=255, dtype=np.uint8) image[int(y1 * height) : int(y2 * height), int(x1 * width) : int(x2 * width), :] = np.full( [int(height * y2) - int(height * y1), int(width * x2) - int(width * x1), 3], fill_value=colors[color], dtype=np.uint8, ) return (image, Rectangle(x1=x1, y1=y1, x2=x2, y2=y2)) labels = [ LabelEntity(name="red", domain=Domain.DETECTION, id=0), # OLD class LabelEntity(name="green", domain=Domain.DETECTION, id=1), ] def get_image(subset, label_id): def get_randcoord(): # disable B311 random - used for the random sampling not for security/crypto x1 = randint(0, 9) # nosec B311 y1 = randint(0, 9) # nosec B311 x2 = min(x1 + 2, 10) y2 = min(y1 + 2, 10) coord = (x1 / 10, y1 / 10, x2 / 10, y2 / 10) return coord coord = get_randcoord() image, bbox = gen_image((640, 480), *coord, labels[label_id].name) if subset != Subset.UNLABELED: return DatasetItemEntity( media=Image(data=image), annotation_scene=AnnotationSceneEntity( annotations=[Annotation(bbox, labels=[ScoredLabel(label=labels[label_id])])], kind=AnnotationSceneKind.ANNOTATION, ), subset=subset, ) return DatasetItemEntity( media=Image(data=image), annotation_scene=NullAnnotationSceneEntity(), subset=subset, ) train = [get_image(Subset.TRAINING, 0) for i in range(10)] train += [get_image(Subset.TRAINING, 1) for i in range(10)] val = [get_image(Subset.VALIDATION, 0) for i in range(2)] val += [get_image(Subset.VALIDATION, 1) for i in range(2)] val += [get_image(Subset.TESTING, 0) for i in range(2)] val += [get_image(Subset.TESTING, 1) for i in range(2)] unlabeled = [get_image(Subset.UNLABELED, 0) for i in range(100)] unlabeled += [get_image(Subset.UNLABELED, 1) for i in range(100)] return DatasetEntity(train + val + unlabeled), labels
# pylint: disable=too-many-locals, too-many-statements
[docs] def main(args): """Main function of Detection Sample.""" logger.info("[Semi-SL] Train model with unlabeled dataset") dataset, labels_list = load_test_dataset() labels_schema = LabelSchemaEntity.from_labels(labels_list) logger.info(f"Train dataset: {len(dataset.get_subset(Subset.TRAINING))} items") logger.info(f"Validation dataset: {len(dataset.get_subset(Subset.VALIDATION))} items") logger.info("Load model template") model_template = parse_model_template(args.template_file_path) logger.info("Set hyperparameters") params = create(model_template.hyper_parameters.data) params.learning_parameters.num_iters = 5 params.learning_parameters.learning_rate = 0.01 params.learning_parameters.learning_rate_warmup_iters = 1 params.learning_parameters.batch_size = 4 logger.info("Setup environment") environment = TaskEnvironment( model=None, hyper_parameters=params, label_schema=labels_schema, model_template=model_template, ) logger.info("Create base Task") task_impl_path = model_template.entrypoints.base task_cls = get_task_class(task_impl_path) task = task_cls(task_environment=environment) logger.info("Train model") output_model = ModelEntity( dataset, environment.get_model_configuration(), ) task.train(dataset, output_model) logger.info("Get predictions on the validation set") validation_dataset = dataset.get_subset(Subset.VALIDATION) predicted_validation_dataset = task.infer( validation_dataset.with_empty_annotations(), InferenceParameters(is_evaluation=False), ) resultset = ResultSetEntity( model=output_model, ground_truth_dataset=validation_dataset, prediction_dataset=predicted_validation_dataset, ) logger.info("Estimate quality on validation set") task.evaluate(resultset) logger.info(str(resultset.performance)) if args.export: logger.info("Export model") exported_model = ModelEntity( dataset, environment.get_model_configuration(), ) task.export(ExportType.OPENVINO, exported_model) logger.info("Create OpenVINO Task") environment.model = exported_model openvino_task_impl_path = model_template.entrypoints.openvino openvino_task_cls = get_task_class(openvino_task_impl_path) openvino_task = openvino_task_cls(environment) logger.info("Get predictions on the validation set") predicted_validation_dataset = openvino_task.infer( validation_dataset.with_empty_annotations(), InferenceParameters(is_evaluation=True), ) resultset = ResultSetEntity( model=output_model, ground_truth_dataset=validation_dataset, prediction_dataset=predicted_validation_dataset, ) logger.info("Estimate quality on validation set") openvino_task.evaluate(resultset) logger.info(str(resultset.performance)) logger.info("Run POT optimization") optimized_model = ModelEntity( dataset, environment.get_model_configuration(), ) openvino_task.optimize( OptimizationType.POT, dataset.get_subset(Subset.TRAINING), optimized_model, OptimizationParameters(), ) logger.info("Get predictions on the validation set") predicted_validation_dataset = openvino_task.infer( validation_dataset.with_empty_annotations(), InferenceParameters(is_evaluation=True), ) resultset = ResultSetEntity( model=optimized_model, ground_truth_dataset=validation_dataset, prediction_dataset=predicted_validation_dataset, ) logger.info("Performance of optimized model:") openvino_task.evaluate(resultset) logger.info(str(resultset.performance)) logger.info("Running the NNCF optimization") environment.model = output_model nncf_task_impl_path = model_template.entrypoints.nncf nncf_task_cls = get_task_class(nncf_task_impl_path) nncf_task = nncf_task_cls(environment) optimized_model = ModelEntity( dataset, configuration=environment.get_model_configuration(), ) nncf_task.optimize(OptimizationType.NNCF, dataset, optimized_model) logger.info("Inferring the optimised model on the validation set.") predicted_validation_dataset = nncf_task.infer( validation_dataset.with_empty_annotations(), InferenceParameters(is_evaluation=True), ) resultset = ResultSetEntity( model=optimized_model, ground_truth_dataset=validation_dataset, prediction_dataset=predicted_validation_dataset, ) logger.info("Evaluating the optimized model on the validation set.") nncf_task.evaluate(resultset) logger.info(str(resultset.performance)) logger.info("Exporting the model.") exported_model = ModelEntity( train_dataset=dataset, configuration=environment.get_model_configuration(), ) nncf_task.export(ExportType.OPENVINO, exported_model) environment.model = exported_model logger.info("Creating the OpenVINO Task.") environment.model = exported_model openvino_task_impl_path = model_template.entrypoints.openvino nncf_openvino_task_cls = get_task_class(openvino_task_impl_path) nncf_openvino_task = nncf_openvino_task_cls(environment) logger.info("Inferring the exported model on the validation set.") predicted_validation_dataset = nncf_openvino_task.infer( validation_dataset.with_empty_annotations(), InferenceParameters(is_evaluation=True), ) logger.info("Evaluating the exported model on the validation set.") resultset = ResultSetEntity( model=exported_model, ground_truth_dataset=validation_dataset, prediction_dataset=predicted_validation_dataset, ) nncf_openvino_task.evaluate(resultset) logger.info(str(resultset.performance))
if __name__ == "__main__": sys.exit(main(parse_args()) or 0)