Source code for otx.api.entities.datasets

"""This module implements the Dataset entity."""
# Copyright (C) 2021-2022 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
#

# pylint: disable=redefined-builtin, invalid-name

import collections.abc
import copy
import itertools
import logging
from enum import Enum
from typing import Generic, Iterator, List, Optional, TypeVar, Union, cast, overload

from bson.objectid import ObjectId

from otx.api.entities.annotation import AnnotationSceneEntity, AnnotationSceneKind
from otx.api.entities.dataset_item import DatasetItemEntity
from otx.api.entities.id import ID
from otx.api.entities.label import LabelEntity
from otx.api.entities.subset import Subset

logger = logging.getLogger(__name__)


[docs] class DatasetPurpose(Enum): """Describes the purpose for the dataset. This makes it possible to identify datasets for a particular use. """ #: used for user inference. # Prediction will generate AnnotationSceneKind.PREDICTION INFERENCE = 0 #: used for training. # AnnotationScene contains user annotation of type AnnotationSceneKind.ANNOTATION TRAINING = 1 #: used for pre-evaluation, evaluation, or testing. # Prediction will generate AnnotationSceneKind.EVALUATION EVALUATION = 2 #: used for generating output stage. # Prediction will generate AnnotationSceneKind.PREDICTION GENERATING_OUTPUT = 3 #: used for dataset slices which are used for analysis. # Prediction will generate AnnotationSceneKind.INTERMEDIATE TEMPORARY_DATASET = 4 #: used for task analysis. # Prediction will generate AnnotationSceneKind.TASK_PREDICTION TASK_INFERENCE = 5 def __str__(self): """Returns the dataset purpose as string.""" return str(self.name)
[docs] class DatasetIterator(collections.abc.Iterator): """This DatasetIterator iterates over the dataset lazily. Implements collections.abc.Iterator. Args: dataset (DatasetEntity): Dataset to iterate over. """ def __init__(self, dataset: "DatasetEntity"): self.dataset = dataset self.index = 0 def __next__(self) -> DatasetItemEntity: """Returns the next dataset item. Raises: StopIteration: if the end of the dataset is reached. Returns: DatasetItemEntity: Dataset item. """ if self.index >= len(self.dataset): raise StopIteration item = self.dataset[self.index] self.index += 1 return item
TDatasetItemEntity = TypeVar("TDatasetItemEntity", bound="DatasetItemEntity")
[docs] class DatasetEntity(Generic[TDatasetItemEntity]): """A dataset consists of a list of DatasetItemEntities and a purpose. ## With dataset items This way assumes the dataset item entities are constructed before the dataset entity is made. >>> from otx.api.entities.image import Image >>> from otx.api.entities.annotation import NullAnnotationSceneEntity >>> from otx.api.entities.dataset_item import DatasetItemEntity >>> item = DatasetItemEntity(media=Image(file_path="image.jpg"), annotation_scene=NullAnnotationSceneEntity()) >>> dataset = DatasetEntity(items=[item]) ## Iterate over dataset Regardless of the instantiation method chosen, the Dataset will work the same. The dataset can be iterated: >>> dataset = DatasetEntity(items=[item_1]) >>> for dataset_item in dataset: ... print(dataset_item) DatasetItemEntity( media=Image(image.jpg, width=640, height=480), annotation_scene=NullAnnotationSceneEntity(), roi=Annotation( shape=Rectangle( x=0.0, y=0.0, width=1.0, height=1.0 ), labels=[], id=6149e454893b7ebbe3a8faf6 ), subset=NONE ) A particular item can also be fetched: >>> first_item = dataset[0] Or a slice: >>> first_ten = dataset[:10] >>> last_ten = dataset[-10:] ## Get a subset of Dataset To get the test data for validating the network: >>> dataset = DatasetEntity() >>> testing_subset = dataset.get_subset(Subset.TESTING) This subset is also a DatasetEntity. The entities in the subset dataset refer to the same entities as in the original dataset. Altering one of the objects in the subset, will also alter them in the original. Args: items (Optional[List[DatasetItemEntity]]): A list of dataset items to create dataset with. Defaults to None. purpose (DatasetPurpose): Purpose for dataset. Refer to :class:`DatasetPurpose` for more info. Defaults to DatasetPurpose.INFERENCE. """ def __init__( self, items: Optional[List[TDatasetItemEntity]] = None, purpose: DatasetPurpose = DatasetPurpose.INFERENCE, ): self._items = [] if items is None else items self._purpose = purpose @property def purpose(self) -> DatasetPurpose: """Returns the DatasetPurpose. For example DatasetPurpose.ANALYSIS. Returns: DatasetPurpose """ return self._purpose @purpose.setter def purpose(self, value: DatasetPurpose) -> None: self._purpose = value def _fetch(self, key: Union[slice, int]) -> Union[DatasetItemEntity, List[DatasetItemEntity]]: """Fetch the given entity/entities from the items. Helper function for __getitem__ Args: key (Union[slice, int]): Key called on the dataset. E.g. int (dataset[0]) or slice (dataset[5:9]) Raises: TypeError: If key is not a slice or int. Returns: Union[DatasetItemEntity, List[DatasetItemEntity]]: The entity/entities requested. """ if isinstance(key, list): return [self._fetch(ii) for ii in key] # type: ignore if isinstance(key, slice): # Get the start, stop, and step from the slice return [self._fetch(ii) for ii in range(*key.indices(len(self._items)))] # type: ignore if isinstance(key, int): return self._items[key] raise TypeError( f"Instance of type `{type(key).__name__}` cannot be used to access Dataset items. " f"Only slice and int are supported" ) def __repr__(self): """Returns string representation of the dataset.""" return f"{self.__class__.__name__}(items={self._items}, purpose={self.purpose})" def __str__(self): """Returns string representation of the dataset.""" return f"{self.__class__.__name__}(size={len(self)}, purpose={self.purpose})" def __len__(self): """Returns the number of items in the dataset.""" return len(self._items) def __eq__(self, other: object) -> bool: """Checks whether the dataset is equal to the operand. Args: other (DatasetEntity): the dataset operand to the equal operator. Returns: bool: True if the datasets are equal """ if isinstance(other, DatasetEntity) and len(self) == len(other) and self.purpose == other.purpose: return all(self[i] == other[i] for i in range(len(self))) return False def __add__(self, other: Union["DatasetEntity", List[DatasetItemEntity]]) -> "DatasetEntity": """Returns a new dataset which contains the items of self added with the input dataset. Note that additional info of the dataset might be incoherent to the addition operands. Args: other (Union[DatasetEntity, List[DatasetItemEntity]]): dataset to be added to output Returns: DatasetEntity: new dataset with the items of self added with the input dataset """ items: List[DatasetItemEntity] if isinstance(other, DatasetEntity): items = self._items + list(other) elif isinstance(other, list): items = self._items + [o for o in other if isinstance(o, DatasetItemEntity)] else: raise ValueError(f"Cannot add other of type {type(other)}") return DatasetEntity(items=items, purpose=self.purpose) @overload def __getitem__(self, key: int) -> DatasetItemEntity: """Returns the item at the given index.""" return cast(DatasetItemEntity, self._fetch(key)) @overload # Overload for proper type hinting of indexing on dataset. def __getitem__(self, key: slice) -> List[DatasetItemEntity]: """Returns items for the given slice.""" return cast(List[DatasetItemEntity], self._fetch(key)) def __getitem__(self, key: Union[slice, int]) -> Union["DatasetItemEntity", List["DatasetItemEntity"]]: """Return a DatasetItemEntity or a list of DatasetItemEntity, given a slice or an integer. Example: Given an integer index: >>> dataset = DatasetEntity(items=[...]) >>> first_item = dataset[0] Or a slice: >>> first_ten = dataset[0:9] >>> last_ten = dataset[-9:] Args: key (Union[slice, int]): key to fetch. Should be `slice` or `int` Returns: Union["DatasetItemEntity", List["DatasetItemEntity"]]: List of DatasetItemEntity or single DatasetItemEntity """ return self._fetch(key) def __iter__(self) -> Iterator[TDatasetItemEntity]: """Return an iterator for the DatasetEntity. This iterator is able to iterate over the DatasetEntity lazily. Returns: DatasetIterator: DatasetIterator instance """ return DatasetIterator(self)
[docs] def with_empty_annotations( self, annotation_kind: AnnotationSceneKind = AnnotationSceneKind.PREDICTION ) -> "DatasetEntity": """Produces a new dataset with empty annotation objects (no shapes or labels). This is a convenience function to generate a dataset with empty annotations from another dataset. This is particularly useful for evaluation on validation data and to build resultsets. Assume a dataset containing user annotations. >>> labeled_dataset = Dataset() # user annotated dataset Then, we want to see the performance of our task on this labeled_dataset, which means we need to create a new dataset to be passed for analysis. >>> prediction_dataset = labeled_dataset.with_empty_annotations() Later, we can pass this prediction_dataset to the task analysis function. By pairing the labeled_dataset and the prediction_dataset, the resultset can then be constructed. Refer to `otx.api.entities.resultset.ResultSetEntity` for more info. Args: annotation_kind (AnnotationSceneKind): Sets the empty annotation to this kind. Defaults to AnnotationSceneKind.PREDICTION Returns: DatasetEntity: a new dataset containing the same items, with empty annotation objects. """ new_dataset = DatasetEntity[TDatasetItemEntity](purpose=self.purpose) for dataset_item in self: if isinstance(dataset_item, DatasetItemEntity): empty_annotation = AnnotationSceneEntity(annotations=[], kind=annotation_kind) # reset ROI roi = copy.copy(dataset_item.roi) roi.id_ = ID(ObjectId()) roi.set_labels([]) new_dataset_item = dataset_item.wrap( media=dataset_item.media, annotation_scene=empty_annotation, roi=roi, subset=dataset_item.subset, metadata=dataset_item.get_metadata(), ) new_dataset.append(new_dataset_item) return new_dataset
[docs] def get_combined_subset(self, subsets: List[Subset]) -> "DatasetEntity": """Returns a new DatasetEntity with just the dataset items matching the subsets. These subsets are DatasetEntity. The dataset items in the subset datasets are the same dataset items as in the original dataset. Altering one of the objects in the output of this function, will also alter them in the original. Example: >>> dataset = DatasetEntity() >>> training_subset = dataset.get_combined_subset([Subset.TRAINING, Subset.UNLABELED]) Args: subsets (List): List of subsets to return. Returns: DatasetEntity: DatasetEntity with items matching subsets """ to_keep = set(subsets) dataset = DatasetEntity( items=[item for item in self if item.subset in to_keep], purpose=self.purpose, ) return dataset
[docs] def get_subset(self, subset: Subset) -> "DatasetEntity": """Returns a new DatasetEntity with just the dataset items matching the subset. This subset is also a DatasetEntity. The dataset items in the subset dataset are the same dataset items as in the original dataset. Altering one of the objects in the output of this function, will also alter them in the original. Example: >>> dataset = DatasetEntity() >>> training_subset = dataset.get_subset(Subset.TRAINING) Args: subset (Subset): `Subset` to return. Returns: DatasetEntity: DatasetEntity with items matching subset """ dataset = DatasetEntity( items=[item for item in self._items if item.subset == subset], purpose=self.purpose, ) return dataset
[docs] def remove(self, item: TDatasetItemEntity) -> None: """Remove an item from the items. This function calls remove_at_indices function. Args: item (DatasetItemEntity): the item to be deleted. Raises: ValueError: if the input item is not in the dataset """ index = self._items.index(item) self.remove_at_indices([index])
[docs] def append(self, item: TDatasetItemEntity) -> None: """Append a DatasetItemEntity to the dataset. Example: Appending a dataset item to a dataset >>> from otx.api.entities.image import Image >>> from otx.api.entities.annotation import NullAnnotationSceneEntity >>> from otx.api.entities.dataset_item import DatasetItemEntity >>> dataset = DatasetEntity() >>> media = Image(file_path='image.jpg') >>> annotation = NullAnnotationSceneEntity() >>> dataset_item = DatasetItemEntity(media=media, annotation_scene=annotation) >>> dataset.append(dataset_item) Args: item (DatasetItemEntity): item to append """ if item.media is None: raise ValueError("Media in dataset item cannot be None") self._items.append(item)
[docs] def sort_items(self) -> None: """Order the dataset items. Does nothing here, but may be overridden in child classes. Returns: None """
[docs] def remove_at_indices(self, indices: List[int]) -> None: """Delete items based on the `indices`. Args: indices (List[int]): the indices of the items that will be deleted from the items. """ indices.sort(reverse=True) # sort in descending order for i_item in indices: del self._items[i_item]
[docs] def get_labels(self, include_empty: bool = False) -> List[LabelEntity]: """Returns the list of all unique labels that are in the dataset. Note: This does not respect the ROI of the dataset items. Args: include_empty (bool): set to True to include empty label (if exists) in the output. Defaults to False. Returns: List[LabelEntity]: list of labels that appear in the dataset """ label_set = set(itertools.chain(*[item.annotation_scene.get_labels(include_empty) for item in self])) return list(label_set)