Source code for otx.algo.action_classification.heads.x3d_head

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
# Copyright (c) OpenMMLab. All rights reserved.

"""X3D head implementation."""
from __future__ import annotations

from torch import Tensor, nn

from otx.algo.action_classification.heads.base_head import BaseHead
from otx.algo.utils.weight_init import normal_init


[docs] class X3DHead(BaseHead): """Classification head for I3D. Args: num_classes (int): Number of classes to be classified. in_channels (int): Number of channels in input feature. loss_cls (nn.module): Loss class like CrossEntropyLoss. spatial_type (str): Pooling type in spatial dimension. Default: 'avg'. dropout_ratio (float): Probability of dropout layer. Default: 0.5. init_std (float): Std value for Initiation. Default: 0.01. fc1_bias (bool): If the first fc layer has bias. Default: False. """ def __init__( self, num_classes: int, in_channels: int, hidden_dim: int, loss_cls: nn.Module, spatial_type: str = "avg", dropout_ratio: float = 0.5, init_std: float = 0.01, fc1_bias: bool = False, average_clips: str | None = None, ) -> None: super().__init__( num_classes=num_classes, in_channels=in_channels, loss_cls=loss_cls, average_clips=average_clips, ) # Call the initializer of BaseHead self.spatial_type = spatial_type self.dropout_ratio = dropout_ratio self.init_std = init_std if self.dropout_ratio != 0: self.dropout = nn.Dropout(p=self.dropout_ratio) else: self.dropout = None self.fc1_bias = fc1_bias self.fc1 = nn.Linear(self.in_channels, hidden_dim, bias=self.fc1_bias) self.fc2 = nn.Linear(hidden_dim, self.num_classes) self.relu = nn.ReLU() self.pool = None if self.spatial_type == "avg": self.pool = nn.AdaptiveAvgPool3d((1, 1, 1)) elif self.spatial_type == "max": self.pool = nn.AdaptiveMaxPool3d((1, 1, 1)) else: raise NotImplementedError
[docs] def init_weights(self) -> None: """Initiate the parameters from scratch.""" normal_init(self.fc1, std=self.init_std) normal_init(self.fc2, std=self.init_std)
[docs] def forward(self, x: Tensor, **kwargs) -> Tensor: """Defines the computation performed at every call. Args: x (Tensor): The input data. Returns: Tensor: The classification scores for input samples. """ # [N, in_channels, T, H, W] if self.pool is None: msg = "pool for X3DHead should be given." raise ValueError(msg) x = self.pool(x) # [N, in_channels, 1, 1, 1] # [N, in_channels, 1, 1, 1] x = x.view(x.shape[0], -1) # [N, in_channels] x = self.fc1(x) # [N, 2048] x = self.relu(x) if self.dropout is not None: x = self.dropout(x) # [N, num_classes] return self.fc2(x)