Source code for otx.algo.classification.hlabel_models.efficientnet

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

"""EfficientNet-B0 model implementation."""

from __future__ import annotations

from copy import copy
from math import ceil
from typing import TYPE_CHECKING

from torch import nn

from otx.algo.classification.backbones.efficientnet import EfficientNetBackbone
from otx.algo.classification.classifier import HLabelClassifier
from otx.algo.classification.heads import HierarchicalLinearClsHead
from otx.algo.classification.losses.asymmetric_angular_loss_with_ignore import AsymmetricAngularLossWithIgnore
from otx.algo.classification.necks.gap import GlobalAveragePooling
from otx.algo.utils.support_otx_v1 import OTXv1Helper
from otx.core.metrics.accuracy import HLabelClsMetricCallable
from otx.core.model.base import DataInputParams, DefaultOptimizerCallable, DefaultSchedulerCallable
from otx.core.model.hlabel_classification import OTXHlabelClsModel
from otx.core.schedulers import LRSchedulerListCallable
from otx.core.types.label import HLabelInfo

if TYPE_CHECKING:
    from lightning.pytorch.cli import LRSchedulerCallable, OptimizerCallable

    from otx.core.metrics import MetricCallable


[docs] class EfficientNetHLabelCls(OTXHlabelClsModel): """EfficientNet Model for hierarchical label classification task.""" def __init__( self, label_info: HLabelInfo, data_input_params: DataInputParams, model_name: str = "efficientnet_b0", optimizer: OptimizerCallable = DefaultOptimizerCallable, scheduler: LRSchedulerCallable | LRSchedulerListCallable = DefaultSchedulerCallable, metric: MetricCallable = HLabelClsMetricCallable, torch_compile: bool = False, ) -> None: super().__init__( label_info=label_info, data_input_params=data_input_params, model_name=model_name, optimizer=optimizer, scheduler=scheduler, metric=metric, torch_compile=torch_compile, ) def _create_model(self, head_config: dict | None = None) -> nn.Module: # type: ignore[override] head_config = head_config if head_config is not None else self.label_info.as_head_config_dict() if not isinstance(self.label_info, HLabelInfo): raise TypeError(self.label_info) backbone = EfficientNetBackbone(model_name=self.model_name, input_size=self.data_input_params.input_size) copied_head_config = copy(head_config) copied_head_config["step_size"] = ( ceil(self.data_input_params.input_size[0] / 32), ceil(self.data_input_params.input_size[1] / 32), ) return HLabelClassifier( backbone=backbone, neck=GlobalAveragePooling(dim=2), head=HierarchicalLinearClsHead(**copied_head_config, in_channels=backbone.num_features), multiclass_loss=nn.CrossEntropyLoss(), multilabel_loss=AsymmetricAngularLossWithIgnore(gamma_pos=0.0, gamma_neg=1.0, reduction="sum"), )
[docs] def load_from_otx_v1_ckpt(self, state_dict: dict, add_prefix: str = "model.") -> dict: """Load the previous OTX ckpt according to OTX2.0.""" return OTXv1Helper.load_cls_effnet_b0_ckpt(state_dict, "hlabel", add_prefix)