Source code for otx.algo.classification.hlabel_models.torchvision_model

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

"""Torchvision model for the OTX classification."""

from __future__ import annotations

from typing import TYPE_CHECKING

from torch import nn

from otx.algo.classification.backbones.torchvision import TorchvisionBackbone
from otx.algo.classification.classifier import HLabelClassifier
from otx.algo.classification.heads import (
    HierarchicalLinearClsHead,
)
from otx.algo.classification.losses import AsymmetricAngularLossWithIgnore
from otx.algo.classification.necks.gap import GlobalAveragePooling
from otx.core.metrics.accuracy import HLabelClsMetricCallable
from otx.core.model.base import DataInputParams, DefaultOptimizerCallable, DefaultSchedulerCallable
from otx.core.model.hlabel_classification import OTXHlabelClsModel
from otx.core.schedulers import LRSchedulerListCallable
from otx.core.types.label import HLabelInfo

if TYPE_CHECKING:
    from lightning.pytorch.cli import LRSchedulerCallable, OptimizerCallable

    from otx.core.metrics import MetricCallable


[docs] class TVModelHLabelCls(OTXHlabelClsModel): """TVModelForHLabelCls class represents a Torchvision model for hierarchical label classification. Args: label_info (HLabelInfo): Information about the hierarchical labels. backbone (TVModelType): The type of Torchvision backbone model. pretrained (bool, optional): Whether to use pretrained weights. Defaults to True. optimizer (OptimizerCallable, optional): The optimizer callable. Defaults to DefaultOptimizerCallable. scheduler (LRSchedulerCallable | LRSchedulerListCallable, optional): The learning rate scheduler callable. Defaults to DefaultSchedulerCallable. metric (MetricCallable, optional): The metric callable. Defaults to HLabelClsMetricCallble. torch_compile (bool, optional): Whether to compile the model using TorchScript. Defaults to False. input_size (tuple[int, int], optional): The input size of the images. Defaults to (224, 224). """ def __init__( self, label_info: HLabelInfo, data_input_params: DataInputParams, model_name: str = "efficientnet_v2_s", optimizer: OptimizerCallable = DefaultOptimizerCallable, scheduler: LRSchedulerCallable | LRSchedulerListCallable = DefaultSchedulerCallable, metric: MetricCallable = HLabelClsMetricCallable, torch_compile: bool = False, ) -> None: super().__init__( label_info=label_info, data_input_params=data_input_params, model_name=model_name, optimizer=optimizer, scheduler=scheduler, metric=metric, torch_compile=torch_compile, ) def _create_model(self, head_config: dict | None = None) -> nn.Module: # type: ignore[override] head_config = head_config if head_config is not None else self.label_info.as_head_config_dict() backbone = TorchvisionBackbone(backbone=self.model_name) return HLabelClassifier( backbone=backbone, neck=GlobalAveragePooling(dim=2), head=HierarchicalLinearClsHead(**head_config, in_channels=backbone.in_features), multiclass_loss=nn.CrossEntropyLoss(), multilabel_loss=AsymmetricAngularLossWithIgnore(gamma_pos=0.0, gamma_neg=1.0, reduction="sum"), )