Source code for otx.algo.classification.multiclass_models.torchvision_model

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

"""Torchvision model for the OTX classification."""

from __future__ import annotations

from typing import TYPE_CHECKING

import torch
from torch import nn

from otx.algo.classification.backbones.torchvision import TorchvisionBackbone
from otx.algo.classification.classifier import ImageClassifier
from otx.algo.classification.heads import (
    LinearClsHead,
)
from otx.algo.classification.necks.gap import GlobalAveragePooling
from otx.core.metrics.accuracy import MultiClassClsMetricCallable
from otx.core.model.base import DataInputParams, DefaultOptimizerCallable, DefaultSchedulerCallable
from otx.core.model.multiclass_classification import (
    OTXMulticlassClsModel,
)
from otx.core.schedulers import LRSchedulerListCallable
from otx.core.types.label import LabelInfoTypes

if TYPE_CHECKING:
    from lightning.pytorch.cli import LRSchedulerCallable, OptimizerCallable

    from otx.core.metrics import MetricCallable


[docs] class TVModelMulticlassCls(OTXMulticlassClsModel): """Torchvision model for multiclass classification. Args: label_info (LabelInfoTypes): Information about the labels. data_input_params (DataInputParams): Data input parameters such as input size and normalization. model_name (str, optional): Backbone model name for feature extraction. Defaults to "efficientnet_v2_s". optimizer (OptimizerCallable, optional): Optimizer for model training. Defaults to DefaultOptimizerCallable. scheduler (LRSchedulerCallable | LRSchedulerListCallable, optional): Learning rate scheduler. Defaults to DefaultSchedulerCallable. metric (MetricCallable, optional): Metric for model evaluation. Defaults to MultiClassClsMetricCallable. torch_compile (bool, optional): Whether to compile the model using TorchScript. Defaults to False. """ def __init__( self, label_info: LabelInfoTypes, data_input_params: DataInputParams, model_name: str = "efficientnet_v2_s", freeze_backbone: bool = False, optimizer: OptimizerCallable = DefaultOptimizerCallable, scheduler: LRSchedulerCallable | LRSchedulerListCallable = DefaultSchedulerCallable, metric: MetricCallable = MultiClassClsMetricCallable, torch_compile: bool = False, ) -> None: super().__init__( label_info=label_info, data_input_params=data_input_params, model_name=model_name, freeze_backbone=freeze_backbone, optimizer=optimizer, scheduler=scheduler, metric=metric, torch_compile=torch_compile, ) def _create_model(self, num_classes: int | None = None) -> nn.Module: num_classes = num_classes if num_classes is not None else self.num_classes backbone = TorchvisionBackbone(backbone=self.model_name) neck = GlobalAveragePooling(dim=2) return ImageClassifier( backbone=backbone, neck=neck, head=LinearClsHead( num_classes=num_classes, in_channels=backbone.in_features, ), loss=nn.CrossEntropyLoss(), )
[docs] def forward_for_tracing(self, image: torch.Tensor) -> torch.Tensor | dict[str, torch.Tensor]: """Model forward function used for the model tracing during model exportation.""" if self.explain_mode: return self.model(images=image, mode="explain") return self.model(images=image, mode="tensor")