Source code for otx.algo.classification.torchvision_model

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

"""Torchvision model for the OTX classification."""

from __future__ import annotations

from copy import deepcopy
from typing import TYPE_CHECKING, Literal

import torch
from torch import nn

from otx.algo.classification.backbones.torchvision import TorchvisionBackbone, TVModelType
from otx.algo.classification.classifier import HLabelClassifier, ImageClassifier, SemiSLClassifier
from otx.algo.classification.heads import (
    HierarchicalCBAMClsHead,
    LinearClsHead,
    MultiLabelLinearClsHead,
    SemiSLLinearClsHead,
)
from otx.algo.classification.losses import AsymmetricAngularLossWithIgnore
from otx.algo.classification.necks.gap import GlobalAveragePooling
from otx.algo.classification.utils import get_classification_layers
from otx.core.data.entity.classification import (
    HlabelClsBatchDataEntity,
    HlabelClsBatchPredEntity,
    MulticlassClsBatchDataEntity,
    MulticlassClsBatchPredEntity,
    MultilabelClsBatchDataEntity,
    MultilabelClsBatchPredEntity,
)
from otx.core.metrics.accuracy import HLabelClsMetricCallable, MultiClassClsMetricCallable, MultiLabelClsMetricCallable
from otx.core.model.base import DefaultOptimizerCallable, DefaultSchedulerCallable
from otx.core.model.classification import (
    OTXHlabelClsModel,
    OTXMulticlassClsModel,
    OTXMultilabelClsModel,
)
from otx.core.schedulers import LRSchedulerListCallable
from otx.core.types.label import HLabelInfo, LabelInfoTypes
from otx.core.types.task import OTXTrainType

if TYPE_CHECKING:
    from lightning.pytorch.cli import LRSchedulerCallable, OptimizerCallable

    from otx.core.metrics import MetricCallable


[docs] class TVModelForMulticlassCls(OTXMulticlassClsModel): """Torchvision model for multiclass classification. Args: label_info (LabelInfoTypes): Information about the labels. backbone (TVModelType): Backbone model for feature extraction. pretrained (bool, optional): Whether to use pretrained weights. Defaults to True. optimizer (OptimizerCallable, optional): Optimizer for model training. Defaults to DefaultOptimizerCallable. scheduler (LRSchedulerCallable | LRSchedulerListCallable, optional): Learning rate scheduler. Defaults to DefaultSchedulerCallable. metric (MetricCallable, optional): Metric for model evaluation. Defaults to MultiClassClsMetricCallable. torch_compile (bool, optional): Whether to compile the model using TorchScript. Defaults to False. train_type (Literal[OTXTrainType.SUPERVISED, OTXTrainType.SEMI_SUPERVISED], optional): Type of training. Defaults to OTXTrainType.SUPERVISED. input_size (tuple[int, int], optional): Input size of the images. Defaults to (224, 224). Attributes: backbone (TVModelType): Backbone model for feature extraction. pretrained (bool): Whether to use pretrained weights. classification_layers (nn.ModuleDict): Classification layers for class-incremental learning. """ def __init__( self, label_info: LabelInfoTypes, backbone: TVModelType, pretrained: bool = True, optimizer: OptimizerCallable = DefaultOptimizerCallable, scheduler: LRSchedulerCallable | LRSchedulerListCallable = DefaultSchedulerCallable, metric: MetricCallable = MultiClassClsMetricCallable, torch_compile: bool = False, train_type: Literal[OTXTrainType.SUPERVISED, OTXTrainType.SEMI_SUPERVISED] = OTXTrainType.SUPERVISED, input_size: tuple[int, int] = (224, 224), ) -> None: self.backbone = backbone self.pretrained = pretrained super().__init__( label_info=label_info, input_size=input_size, optimizer=optimizer, scheduler=scheduler, metric=metric, torch_compile=torch_compile, train_type=train_type, ) def _create_model(self) -> nn.Module: # Get classification_layers for class-incr learning sample_model_dict = self._build_model(num_classes=5).state_dict() incremental_model_dict = self._build_model(num_classes=6).state_dict() self.classification_layers = get_classification_layers( sample_model_dict, incremental_model_dict, prefix="model.", ) model = self._build_model(num_classes=self.num_classes) model.init_weights() return model def _build_model(self, num_classes: int) -> nn.Module: backbone = TorchvisionBackbone(backbone=self.backbone, pretrained=self.pretrained) neck = GlobalAveragePooling(dim=2) if self.train_type == OTXTrainType.SEMI_SUPERVISED: return SemiSLClassifier( backbone=backbone, neck=neck, head=SemiSLLinearClsHead( num_classes=num_classes, in_channels=backbone.in_features, ), loss=nn.CrossEntropyLoss(reduction="none"), ) return ImageClassifier( backbone=backbone, neck=neck, head=LinearClsHead( num_classes=num_classes, in_channels=backbone.in_features, ), loss=nn.CrossEntropyLoss(), )
[docs] def forward_explain(self, inputs: MulticlassClsBatchDataEntity) -> MulticlassClsBatchPredEntity: """Model forward explain function.""" outputs = self.model(images=inputs.stacked_images, mode="explain") return MulticlassClsBatchPredEntity( batch_size=len(outputs["preds"]), images=inputs.images, imgs_info=inputs.imgs_info, labels=outputs["preds"], scores=outputs["scores"], saliency_map=outputs["saliency_map"], feature_vector=outputs["feature_vector"], )
[docs] def forward_for_tracing(self, image: torch.Tensor) -> torch.Tensor | dict[str, torch.Tensor]: """Model forward function used for the model tracing during model exportation.""" if self.explain_mode: return self.model(images=image, mode="explain") return self.model(images=image, mode="tensor")
[docs] class TVModelForMultilabelCls(OTXMultilabelClsModel): """Torchvision model for multilabel classification. Args: label_info (LabelInfoTypes): Information about the labels. backbone (TVModelType): Backbone model for feature extraction. pretrained (bool, optional): Whether to use pretrained weights. Defaults to True. optimizer (OptimizerCallable, optional): Optimizer for model training. Defaults to DefaultOptimizerCallable. scheduler (LRSchedulerCallable | LRSchedulerListCallable, optional): Learning rate scheduler. Defaults to DefaultSchedulerCallable. metric (MetricCallable, optional): Metric for model evaluation. Defaults to MultiLabelClsMetricCallable. torch_compile (bool, optional): Whether to compile the model using TorchScript. Defaults to False. input_size (tuple[int, int], optional): Input size of the images. Defaults to (224, 224). Attributes: backbone (TVModelType): Backbone model for feature extraction. pretrained (bool): Whether to use pretrained weights. input_size (tuple[int, int]): Input size of the images. """ def __init__( self, label_info: LabelInfoTypes, backbone: TVModelType, pretrained: bool = True, optimizer: OptimizerCallable = DefaultOptimizerCallable, scheduler: LRSchedulerCallable | LRSchedulerListCallable = DefaultSchedulerCallable, metric: MetricCallable = MultiLabelClsMetricCallable, torch_compile: bool = False, input_size: tuple[int, int] = (224, 224), ) -> None: self.backbone = backbone self.pretrained = pretrained super().__init__( label_info=label_info, optimizer=optimizer, scheduler=scheduler, metric=metric, torch_compile=torch_compile, input_size=input_size, ) self.input_size: tuple[int, int] def _create_model(self) -> nn.Module: # Get classification_layers for class-incr learning sample_model_dict = self._build_model(num_classes=5).state_dict() incremental_model_dict = self._build_model(num_classes=6).state_dict() self.classification_layers = get_classification_layers( sample_model_dict, incremental_model_dict, prefix="model.", ) model = self._build_model(num_classes=self.num_classes) model.init_weights() return model def _build_model(self, num_classes: int) -> nn.Module: backbone = TorchvisionBackbone(backbone=self.backbone, pretrained=self.pretrained) return ImageClassifier( backbone=backbone, neck=GlobalAveragePooling(dim=2), head=MultiLabelLinearClsHead( num_classes=num_classes, in_channels=backbone.in_features, normalized=True, ), loss=AsymmetricAngularLossWithIgnore(gamma_pos=0.0, gamma_neg=1.0, reduction="sum"), loss_scale=7.0, )
[docs] def forward_explain(self, inputs: MultilabelClsBatchDataEntity) -> MultilabelClsBatchPredEntity: """Model forward explain function.""" outputs = self.model(images=inputs.stacked_images, mode="explain") return MultilabelClsBatchPredEntity( batch_size=len(outputs["preds"]), images=inputs.images, imgs_info=inputs.imgs_info, labels=outputs["preds"], scores=outputs["scores"], saliency_map=outputs["saliency_map"], feature_vector=outputs["feature_vector"], )
[docs] def forward_for_tracing(self, image: torch.Tensor) -> torch.Tensor | dict[str, torch.Tensor]: """Model forward function used for the model tracing during model exportation.""" if self.explain_mode: return self.model(images=image, mode="explain") return self.model(images=image, mode="tensor")
[docs] class TVModelForHLabelCls(OTXHlabelClsModel): """TVModelForHLabelCls class represents a Torchvision model for hierarchical label classification. Args: label_info (HLabelInfo): Information about the hierarchical labels. backbone (TVModelType): The type of Torchvision backbone model. pretrained (bool, optional): Whether to use pretrained weights. Defaults to True. optimizer (OptimizerCallable, optional): The optimizer callable. Defaults to DefaultOptimizerCallable. scheduler (LRSchedulerCallable | LRSchedulerListCallable, optional): The learning rate scheduler callable. Defaults to DefaultSchedulerCallable. metric (MetricCallable, optional): The metric callable. Defaults to HLabelClsMetricCallble. torch_compile (bool, optional): Whether to compile the model using TorchScript. Defaults to False. input_size (tuple[int, int], optional): The input size of the images. Defaults to (224, 224). Attributes: backbone (TVModelType): The type of Torchvision backbone model. pretrained (bool): Whether to use pretrained weights. classification_layers (nn.Module): The classification layers for class-incremental learning. """ label_info: HLabelInfo def __init__( self, label_info: HLabelInfo, backbone: TVModelType, pretrained: bool = True, optimizer: OptimizerCallable = DefaultOptimizerCallable, scheduler: LRSchedulerCallable | LRSchedulerListCallable = DefaultSchedulerCallable, metric: MetricCallable = HLabelClsMetricCallable, torch_compile: bool = False, input_size: tuple[int, int] = (224, 224), ) -> None: self.backbone = backbone self.pretrained = pretrained super().__init__( label_info=label_info, optimizer=optimizer, scheduler=scheduler, metric=metric, torch_compile=torch_compile, input_size=input_size, ) def _create_model(self) -> nn.Module: # Get classification_layers for class-incr learning sample_config = deepcopy(self.label_info.as_head_config_dict()) sample_config["num_classes"] = 5 sample_model_dict = self._build_model(head_config=sample_config).state_dict() sample_config["num_classes"] = 6 incremental_model_dict = self._build_model(head_config=sample_config).state_dict() self.classification_layers = get_classification_layers( sample_model_dict, incremental_model_dict, prefix="model.", ) model = self._build_model(head_config=self.label_info.as_head_config_dict()) model.init_weights() return model def _build_model(self, head_config: dict) -> nn.Module: backbone = TorchvisionBackbone(backbone=self.backbone, pretrained=self.pretrained) return HLabelClassifier( backbone=backbone, neck=nn.Identity(), head=HierarchicalCBAMClsHead( in_channels=backbone.in_features, **head_config, ), multiclass_loss=nn.CrossEntropyLoss(), multilabel_loss=AsymmetricAngularLossWithIgnore(gamma_pos=0.0, gamma_neg=1.0, reduction="sum"), )
[docs] def forward_explain(self, inputs: HlabelClsBatchDataEntity) -> HlabelClsBatchPredEntity: """Model forward explain function.""" outputs = self.model(images=inputs.stacked_images, mode="explain") return HlabelClsBatchPredEntity( batch_size=len(outputs["preds"]), images=inputs.images, imgs_info=inputs.imgs_info, labels=outputs["preds"], scores=outputs["scores"], saliency_map=outputs["saliency_map"], feature_vector=outputs["feature_vector"], )
[docs] def forward_for_tracing(self, image: torch.Tensor) -> torch.Tensor | dict[str, torch.Tensor]: """Model forward function used for the model tracing during model exportation.""" if self.explain_mode: return self.model(images=image, mode="explain") return self.model(images=image, mode="tensor")