Source code for otx.core.data.factory
# Copyright (C) 2023-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
#
"""Factory classes for dataset and transforms."""
from __future__ import annotations
from typing import TYPE_CHECKING
from otx.core.config.data import VisualPromptingConfig
from otx.core.types.image import ImageColorChannel
from otx.core.types.task import OTXTaskType
from otx.core.types.transformer_libs import TransformLibType
from .dataset.base import OTXDataset, Transforms
if TYPE_CHECKING:
from datumaro import Dataset as DmDataset
from otx.core.config.data import SubsetConfig
from otx.core.data.mem_cache import MemCacheHandlerBase
__all__ = ["TransformLibFactory", "OTXDatasetFactory"]
[docs]
class OTXDatasetFactory:
"""Factory class for OTXDataset."""
[docs]
@classmethod
def create( # noqa: PLR0911
cls: type[OTXDatasetFactory],
task: OTXTaskType,
dm_subset: DmDataset,
cfg_subset: SubsetConfig,
mem_cache_handler: MemCacheHandlerBase,
mem_cache_img_max_size: tuple[int, int] | None = None,
image_color_channel: ImageColorChannel = ImageColorChannel.RGB,
stack_images: bool = True,
include_polygons: bool = False,
ignore_index: int = 255,
vpm_config: VisualPromptingConfig = VisualPromptingConfig(), # noqa: B008
) -> OTXDataset:
"""Create OTXDataset."""
transforms = TransformLibFactory.generate(cfg_subset)
common_kwargs = {
"dm_subset": dm_subset,
"transforms": transforms,
"mem_cache_handler": mem_cache_handler,
"mem_cache_img_max_size": mem_cache_img_max_size,
"image_color_channel": image_color_channel,
"stack_images": stack_images,
"to_tv_image": cfg_subset.to_tv_image,
}
if task in (
OTXTaskType.ANOMALY,
OTXTaskType.ANOMALY_CLASSIFICATION,
OTXTaskType.ANOMALY_DETECTION,
OTXTaskType.ANOMALY_SEGMENTATION,
):
from .dataset.anomaly import AnomalyDataset
return AnomalyDataset(task_type=task, **common_kwargs)
if task == OTXTaskType.MULTI_CLASS_CLS:
from .dataset.classification import OTXMulticlassClsDataset
return OTXMulticlassClsDataset(**common_kwargs)
if task == OTXTaskType.MULTI_LABEL_CLS:
from .dataset.classification import OTXMultilabelClsDataset
return OTXMultilabelClsDataset(**common_kwargs)
if task == OTXTaskType.H_LABEL_CLS:
from .dataset.classification import OTXHlabelClsDataset
return OTXHlabelClsDataset(**common_kwargs)
if task == OTXTaskType.DETECTION:
from .dataset.detection import OTXDetectionDataset
return OTXDetectionDataset(**common_kwargs)
if task in [OTXTaskType.ROTATED_DETECTION, OTXTaskType.INSTANCE_SEGMENTATION]:
from .dataset.instance_segmentation import OTXInstanceSegDataset
return OTXInstanceSegDataset(include_polygons=include_polygons, **common_kwargs)
if task == OTXTaskType.SEMANTIC_SEGMENTATION:
from .dataset.segmentation import OTXSegmentationDataset
return OTXSegmentationDataset(ignore_index=ignore_index, **common_kwargs)
if task == OTXTaskType.ACTION_CLASSIFICATION:
from .dataset.action_classification import OTXActionClsDataset
return OTXActionClsDataset(**common_kwargs)
if task == OTXTaskType.VISUAL_PROMPTING:
from .dataset.visual_prompting import OTXVisualPromptingDataset
use_bbox = getattr(vpm_config, "use_bbox", False)
use_point = getattr(vpm_config, "use_point", False)
return OTXVisualPromptingDataset(use_bbox=use_bbox, use_point=use_point, **common_kwargs)
if task == OTXTaskType.ZERO_SHOT_VISUAL_PROMPTING:
from .dataset.visual_prompting import OTXZeroShotVisualPromptingDataset
use_bbox = getattr(vpm_config, "use_bbox", False)
use_point = getattr(vpm_config, "use_point", False)
return OTXZeroShotVisualPromptingDataset(use_bbox=use_bbox, use_point=use_point, **common_kwargs)
if task == OTXTaskType.KEYPOINT_DETECTION:
from .dataset.keypoint_detection import OTXKeypointDetectionDataset
return OTXKeypointDetectionDataset(**common_kwargs)
raise NotImplementedError(task)