Source code for otx.core.exporter.base

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
#
"""Class definition for base model exporter used in OTX."""

from __future__ import annotations

import json
import logging as log
import os
import tempfile
from abc import abstractmethod
from pathlib import Path
from typing import TYPE_CHECKING, Any, Literal
from zipfile import ZipFile

from model_api.models import Model

from otx.core.exporter.exportable_code import demo
from otx.core.types.export import OTXExportFormatType, TaskLevelExportParameters
from otx.core.types.precision import OTXPrecisionType

if TYPE_CHECKING:
    import onnx
    import openvino

    from otx.core.model.base import OTXModel


[docs] class OTXModelExporter: """Base class for the model exporters used in OTX. Args: task_level_export_parameters (TaskLevelExportParameters): Collection of export parameters which can be defined at a task level. input_size (tuple[int, ...]): Input shape. mean (tuple[float, float, float], optional): Mean values of 3 channels. Defaults to (0.0, 0.0, 0.0). std (tuple[float, float, float], optional): Std values of 3 channels. Defaults to (1.0, 1.0, 1.0). resize_mode (Literal["crop", "standard", "fit_to_window", "fit_to_window_letterbox"], optional): A resize type for model preprocess. "standard" resizes images without keeping ratio. "fit_to_window" resizes images while keeping ratio. "fit_to_window_letterbox" resizes images and pads images to fit the size. Defaults to "standard". pad_value (int, optional): Padding value. Defaults to 0. swap_rgb (bool, optional): Whether to convert the image from BGR to RGB Defaults to False. output_names (list[str] | None, optional): Names for model's outputs, which would be embedded into resulting model. Note, that order of the output names should be the same, as in the target model. """ def __init__( self, task_level_export_parameters: TaskLevelExportParameters, input_size: tuple[int, ...], mean: tuple[float, float, float] = (0.0, 0.0, 0.0), std: tuple[float, float, float] = (1.0, 1.0, 1.0), resize_mode: Literal["crop", "standard", "fit_to_window", "fit_to_window_letterbox"] = "standard", pad_value: int = 0, swap_rgb: bool = False, output_names: list[str] | None = None, ) -> None: self.input_size = input_size self.mean = mean self.std = std self.resize_mode = resize_mode self.pad_value = pad_value self.swap_rgb = swap_rgb self.task_level_export_parameters = task_level_export_parameters self.output_names = output_names @property def metadata(self) -> dict[tuple[str, str], str]: """Collection of metadata to be stored in OpenVINO Intermediate Representation or ONNX. This metadata is mainly used to support ModelAPI. """ return self.task_level_export_parameters.to_metadata()
[docs] def export( self, model: OTXModel, output_dir: Path, base_model_name: str = "exported_model", export_format: OTXExportFormatType = OTXExportFormatType.OPENVINO, precision: OTXPrecisionType = OTXPrecisionType.FP32, to_exportable_code: bool = False, ) -> Path: """Exports input model to the specified deployable format, such as OpenVINO IR or ONNX. Args: model (OTXModel): OTXModel to be exported output_dir (Path): path to the directory to store export artifacts base_model_name (str, optional): exported model name format (OTXExportFormatType): final format of the exported model precision (OTXExportPrecisionType, optional): precision of the exported model's weights to_exportable_code (bool, optional): whether to generate exportable code Returns: Path: path to the exported model """ if export_format == OTXExportFormatType.OPENVINO: if to_exportable_code: return self.to_exportable_code( model, output_dir, base_model_name, precision, ) return self.to_openvino(model, output_dir, base_model_name, precision) if export_format == OTXExportFormatType.ONNX: return self.to_onnx(model, output_dir, base_model_name, precision) msg = f"Unsupported export format: {export_format}" raise ValueError(msg)
[docs] @abstractmethod def to_openvino( self, model: OTXModel, output_dir: Path, base_model_name: str = "exported_model", precision: OTXPrecisionType = OTXPrecisionType.FP32, ) -> Path: """Export to OpenVINO Intermediate Representation format. Args: model (OTXModel): OTXModel to be exported output_dir (Path): path to the directory to store export artifacts base_model_name (str, optional): exported model name precision (OTXExportPrecisionType, optional): precision of the exported model's weights Returns: Path: path to the exported model. """
[docs] @abstractmethod def to_onnx( self, model: OTXModel, output_dir: Path, base_model_name: str = "exported_model", precision: OTXPrecisionType = OTXPrecisionType.FP32, embed_metadata: bool = True, ) -> Path: """Abstract method for ONNX export. Converts the given torch model to ONNX format and saves it to the specified output directory. Args: model (OTXModel): The input PyTorch model to be converted. output_dir (Path): The directory where the ONNX model will be saved. base_model_name (str, optional): The name of the exported ONNX model. Defaults to "exported_model". precision (OTXPrecisionType, optional): The precision type for the exported model. Defaults to OTXPrecisionType.FP32. embed_metadata (bool, optional): Flag to embed metadata in the exported ONNX model. Defaults to True. Returns: Path: The file path where the ONNX model is saved. """
[docs] def to_exportable_code( self, model: OTXModel, output_dir: Path, base_model_name: str = "exported_model", precision: OTXPrecisionType = OTXPrecisionType.FP32, ) -> Path: """Export to zip folder final OV IR model with runable demo. Args: model (OTXModel): OTXModel to be exported output_dir (Path): path to the directory to store export artifacts base_model_name (str, optional): exported model name precision (OTXExportPrecisionType, optional): precision of the exported model's weights Returns: Path: path to the exported model. """ work_demo_dir = Path(demo.__file__).parent parameters: dict[str, Any] = {} output_zip_path = output_dir / "exportable_code.zip" Path.mkdir(output_dir, exist_ok=True) is_ir_model = isinstance(model, Model) with tempfile.TemporaryDirectory() as temp_dir, ZipFile(output_zip_path, "x") as arch: # model files path_to_model = ( self.to_openvino(model, Path(temp_dir), base_model_name, precision) if not is_ir_model else Path(model.inference_adapter.model_path) ) if not path_to_model.exists(): msg = f"File {path_to_model} does not exist. Check the model path." raise RuntimeError(msg) if not is_ir_model and self.metadata is not None: parameters["task_type"] = self.metadata.get(("model_info", "task_type"), "") parameters["model_type"] = self.metadata.get(("model_info", "model_type"), "") parameters["model_parameters"] = { "labels": self.metadata.get(("model_info", "labels"), ""), "labels_ids": self.metadata.get(("model_info", "label_ids"), ""), } elif is_ir_model: model_info = model.get_model().rt_info["model_info"] parameters["task_type"] = model_info["task_type"].value if "task_type" in model_info else "" parameters["model_type"] = model_info["model_type"].value if "model_type" in model_info else "" parameters["model_parameters"] = { "labels": model_info["labels"].value if "labels" in model_info else "", "labels_ids": model_info["label_ids"].value if "label_ids" in model_info else "", } arch.write(str(path_to_model), Path("model") / "model.xml") arch.write(path_to_model.with_suffix(".bin"), Path("model") / "model.bin") arch.writestr( str(Path("model") / "config.json"), json.dumps(parameters, ensure_ascii=False, indent=4), ) # python files arch.write( work_demo_dir / "requirements.txt", Path("python") / "requirements.txt", ) arch.write(work_demo_dir / "demo.py", Path("python") / "demo.py") arch.write(work_demo_dir / "setup.py", Path("python") / "setup.py") arch.write(work_demo_dir / "README.md", Path("./") / "README.md") arch.write(work_demo_dir / "LICENSE", Path("./") / "LICENSE") # write demo_package demo_package = work_demo_dir / "demo_package" for root, _, files in os.walk(demo_package): if root.endswith("__pycache__"): continue for file in files: file_path = Path(root) / file archive_path = file_path.relative_to(demo_package) arch.write(file_path, Path("python") / "demo_package" / archive_path) return output_zip_path
@staticmethod def _embed_onnx_metadata(onnx_model: onnx.ModelProto, metadata: dict[tuple[str, str], Any]) -> onnx.ModelProto: """Embeds metadata to ONNX model.""" for item in metadata: meta = onnx_model.metadata_props.add() attr_path = " ".join(map(str, item)) meta.key = attr_path.strip() meta.value = str(metadata[item]) return onnx_model @staticmethod def _embed_openvino_ir_metadata(ov_model: openvino.Model, metadata: dict[tuple[str, str], Any]) -> openvino.Model: """Embeds metadata to OpenVINO model.""" for k, data in metadata.items(): ov_model.set_rt_info(data, list(k)) return ov_model def _extend_model_metadata(self, metadata: dict[tuple[str, str], str]) -> dict[tuple[str, str], str]: """Extends metadata coming from model with preprocessing-specific parameters. Model's original metadata has priority over exporter's extra metadata Args: metadata (dict[tuple[str, str], str]): existing metadata for export Returns: dict[tuple[str, str] ,str]: updated metadata """ mean_str = " ".join(map(str, self.mean)) std_str = " ".join(map(str, self.std)) extra_data = { ("model_info", "mean_values"): mean_str.strip(), ("model_info", "scale_values"): std_str.strip(), ("model_info", "resize_type"): self.resize_mode, ("model_info", "pad_value"): str(self.pad_value), ("model_info", "reverse_input_channels"): str(self.swap_rgb), } extra_data.update(metadata) return extra_data def _postprocess_openvino_model(self, exported_model: openvino.Model) -> openvino.Model: if len(exported_model.outputs) == 1 and len(exported_model.outputs[0].get_names()) == 0: # workaround for OVC's bug: single output doesn't have a name in OV model exported_model.outputs[0].tensor.set_names({"output1"}) # name assignment process is similar to torch onnx export if self.output_names is not None: if len(exported_model.outputs) >= len(self.output_names): if len(exported_model.outputs) != len(self.output_names): msg = ( "Number of model outputs is greater than the number" " of output names to assign. Please check output_names" " argument of the exporter's constructor." ) log.warning(msg) for i, name in enumerate(self.output_names): traced_names = exported_model.outputs[i].get_names() name_found = False for traced_name in traced_names: if name in traced_name: name_found = True break name_found = name_found and bool(len(traced_names)) if not name_found: msg = ( f"{name} is not matched with the converted model's traced output names: {traced_names}." " Please check output_names argument of the exporter's constructor." ) log.warning(msg) exported_model.outputs[i].tensor.set_names({name}) else: msg = ( "Model has less outputs than the number of output names provided: " f"{len(exported_model.outputs)} vs {len(self.output_names)}" ) raise RuntimeError(msg) if self.metadata is not None: export_metadata = self._extend_model_metadata(self.metadata) exported_model = self._embed_openvino_ir_metadata(exported_model, export_metadata) return exported_model def _postprocess_onnx_model( self, onnx_model: onnx.ModelProto, embed_metadata: bool, precision: OTXPrecisionType, ) -> onnx.ModelProto: if embed_metadata: metadata = {} if self.metadata is None else self._extend_model_metadata(self.metadata) onnx_model = self._embed_onnx_metadata(onnx_model, metadata) if precision == OTXPrecisionType.FP16: from onnxconverter_common import float16 onnx_model = float16.convert_float_to_float16(onnx_model) return onnx_model