Source code for otx.core.exporter.native

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
#
"""Class definition for native model exporter used in OTX."""

from __future__ import annotations

import logging as log
import tempfile
from pathlib import Path
from typing import TYPE_CHECKING, Any, Literal

import onnx
import openvino
import torch

from otx.core.exporter.base import OTXModelExporter
from otx.core.types.export import TaskLevelExportParameters
from otx.core.types.precision import OTXPrecisionType

if TYPE_CHECKING:
    from otx.core.model.base import OTXModel


[docs] class OTXNativeModelExporter(OTXModelExporter): """Exporter that uses native torch and OpenVINO conversion tools.""" def __init__( self, task_level_export_parameters: TaskLevelExportParameters, input_size: tuple[int, ...], mean: tuple[float, float, float] = (0.0, 0.0, 0.0), std: tuple[float, float, float] = (1.0, 1.0, 1.0), resize_mode: Literal["crop", "standard", "fit_to_window", "fit_to_window_letterbox"] = "standard", pad_value: int = 0, swap_rgb: bool = False, via_onnx: bool = False, onnx_export_configuration: dict[str, Any] | None = None, output_names: list[str] | None = None, ) -> None: super().__init__( task_level_export_parameters=task_level_export_parameters, input_size=input_size, mean=mean, std=std, resize_mode=resize_mode, pad_value=pad_value, swap_rgb=swap_rgb, output_names=output_names, ) self.via_onnx = via_onnx self.onnx_export_configuration = onnx_export_configuration if onnx_export_configuration is not None else {} if output_names is not None: self.onnx_export_configuration.update({"output_names": output_names})
[docs] def to_openvino( self, model: OTXModel, output_dir: Path, base_model_name: str = "exported_model", precision: OTXPrecisionType = OTXPrecisionType.FP32, ) -> Path: """Export to OpenVINO Intermediate Representation format. In this implementation the export is done only via standard OV/ONNX tools. """ dummy_tensor = torch.rand(self.input_size).to(next(model.parameters()).device) if self.via_onnx: with tempfile.TemporaryDirectory() as tmpdirname: tmp_dir = Path(tmpdirname) self.to_onnx( model, tmp_dir, base_model_name, OTXPrecisionType.FP32, False, ) exported_model = openvino.convert_model( tmp_dir / (base_model_name + ".onnx"), input=(openvino.runtime.PartialShape(self.input_size),), ) else: exported_model = openvino.convert_model( model, example_input=dummy_tensor, input=(openvino.runtime.PartialShape(self.input_size),), ) exported_model = self._postprocess_openvino_model(exported_model) save_path = output_dir / (base_model_name + ".xml") openvino.save_model(exported_model, save_path, compress_to_fp16=(precision == OTXPrecisionType.FP16)) log.info("Converting to OpenVINO is done.") return Path(save_path)
[docs] def to_onnx( self, model: OTXModel, output_dir: Path, base_model_name: str = "exported_model", precision: OTXPrecisionType = OTXPrecisionType.FP32, embed_metadata: bool = True, ) -> Path: """Export the given PyTorch model to ONNX format and save it to the specified output directory. Args: model (OTXModel): The PyTorch model to be exported. output_dir (Path): The directory where the ONNX model will be saved. base_model_name (str, optional): The base name for the exported model. Defaults to "exported_model". precision (OTXPrecisionType, optional): The precision type for the exported model. Defaults to OTXPrecisionType.FP32. embed_metadata (bool, optional): Whether to embed metadata in the ONNX model. Defaults to True. Returns: Path: The path to the saved ONNX model. """ dummy_tensor = torch.rand(self.input_size).to(next(model.parameters()).device) save_path = str(output_dir / (base_model_name + ".onnx")) torch.onnx.export(model, dummy_tensor, save_path, **self.onnx_export_configuration) onnx_model = onnx.load(save_path) onnx_model = self._postprocess_onnx_model(onnx_model, embed_metadata, precision) onnx.save(onnx_model, save_path) log.info("Converting to ONNX is done.") return Path(save_path)