geti_sdk.data_models
Introduction
The data_models package contains the SDK representation for all entities in GETi, such
as AnnotationScene
,
Image
,
Project
and
Model
and many more.
When interacting with the GETi cluster through the
geti_sdk.geti.Geti
or the
rest_clients
, all entities retrieved from the cluster will be
deserialized into the data models defined in this package.
Module contents
Algorithm-related entities
- class geti_sdk.data_models.algorithms.Algorithm(model_size: str, model_template_id: str, gigaflops: float, name: str | None = None, summary: str | None = None, task_type: str | EnumType | None = None, supports_auto_hpo: bool | None = None, default_algorithm: bool | None = None, performance_category: str | None = None, lifecycle_stage: str | None = None)
Representation of a supported algorithm on the Intel® Geti™ platform.
- model_size: str
- model_template_id: str
- gigaflops: float
- name: str | None
- summary: str | None
- task_type: str | None
- supports_auto_hpo: bool | None
- default_algorithm: bool | None
- performance_category: str | None
- lifecycle_stage: str | None
- to_dict() Dict[str, Any]
Convert the Algorithm to a dictionary representation.
- Returns:
Dictionary holding the algorithm data
- property overview: str
Return a string that shows an overview of the Algorithm properties.
- Returns:
String holding an overview of the algorithm
Project-related entities
- class geti_sdk.data_models.task.Task(title: str, task_type: str | TaskType, labels: List[Label] | None = None, label_schema_id: str | None = None, id: str | None = None)
Representation of a Task in GETi.
- Variables:
title – Title of the task
task_type – Type of the task
labels – List of labels belonging to the task
id – unique database ID of the task
label_schema_id – unique database ID of the label schema for the task
- title: str
- task_type: str
- label_schema_id: str | None
- id: str | None
- property type: TaskType
Return the type of the task.
This property is here to make sure that the type of task_type is derived correctly. The attribute self.task_type can be instantiated both as a string and as a TaskType
- Returns:
type of the task
- property is_trainable: bool
Return True if this Task represents a trainable task.
- Returns:
True if the task is trainable, False otherwise
- property is_global: bool
Return True if this Task represents a trainable task that produces global labels, False otherwise.
- Returns:
True if the task produces global labels, False otherwise
- property is_anomaly: bool
Return True if this task is an anomaly task.
- Returns:
True if task is an anomaly type task, False otherwise
- deidentify() None
Set all identifier fields for the task to None.
- get_label_names(include_empty: bool = True) List[str]
Return a list of label names for the task.
- Parameters:
include_empty – True to include the empty label (if present), False to exclude it
- Returns:
List of label names for the task
- to_dict() Dict[str, Any]
Return the dictionary representation of the task.
- Returns:
- property overview: str
Return a string that shows an overview of the task. This still shows all the detailed information of the task. If less details are required, please use the summary property
- Returns:
String holding an overview of the project
- property summary: str
Return a string that gives a very brief summary of the task. This is the least detailed representation of the task, if more details are required please use the overview property
- Returns:
String holding a brief summary of the task
- prepare_for_post() None
Set all fields to None that are not valid for making a POST request to the /projects endpoint.
- Returns:
- class geti_sdk.data_models.project.Connection(to: str, from_: str)
Representation of a connection between two tasks in GETi.
- Variables:
to – Name of the task to which the connection is leading
from – Name of the task from which the connection originates
- to: str
- from_: str
- class geti_sdk.data_models.project.Pipeline(tasks: List[Task], connections: List[Connection])
Representation of a pipeline for a project in GETi.
- Variables:
tasks – List of tasks in the pipeline
connections – List of connections between the tasks in the pipeline
- connections: List[Connection]
- property trainable_tasks: List[Task]
Return an ordered list of trainable tasks.
- Returns:
List of trainable tasks in the pipeline
- resolve_connections()
Replace the task id’s in the connections attribute of the pipeline with the actual task titles.
- Returns:
- resolve_parent_labels()
Replace the parent_id’s in the pipeline labels by the actual label names.
- Returns:
- property label_id_to_name_mapping: Dict[str, str]
Return a mapping of label ID’s to label names for all labels in the pipeline.
- Returns:
dictionary containing the label ID’s as keys and the label names as values
- get_labels_per_task(include_empty: bool = True) List[List[Label]]
Return a nested list of labels for each task in the pipeline.
Each entry in the outermost list corresponds to a task in the pipeline. The innermost list holds the labels for that specific task
- Parameters:
include_empty – True to include empty labels in the output
- Returns:
nested list of labels for each task in the pipeline
- get_all_labels() List[Label]
Return a list of all labels in the pipeline.
- Returns:
List of all labels for every task in the pipeline
- deidentify() None
Remove all unique database ID’s from the tasks and labels in the pipeline.
- prepare_for_post() None
Set all fields to None that are not valid for making a POST request to the /projects endpoint.
- Returns:
- class geti_sdk.data_models.project.Project(name: str, pipeline: Pipeline, datasets: List[Dataset] | None = None, score: float | None = None, performance: Performance | None = None, creation_time: str | datetime | None = None, id: str | None = None, thumbnail: str | None = None, creator_id: str | None = None, storage_info: Dict | None = None)
Representation of a project in Intel® Geti™.
- Variables:
id – Unique database ID of the project
name – Name of the project
creation_time – Time at which the project was created
pipeline – Pipeline for the project
datasets – List of datasets belonging to the project
score – Score achieved by the AI assistant for the project
thumbnail – URL at which a thumbnail for the project can be obtained
storage_info – Storage information for the project can be obtained
- name: str
- datasets: List[Dataset] | None
- score: float | None
- performance: Performance | None
- creation_time: str | None
- id: str | None
- thumbnail: str | None
- creator_id: str | None
- storage_info: Dict | None
- get_trainable_tasks() List[Task]
Return an ordered list of trainable tasks.
- Returns:
List of trainable tasks in the project
- property project_type: str
Return a string containing the project type. The type is constructed by concatenating the types of tasks in the task chain together, separated by a ‘_to_’ sequence.
For example, a project with a detection task followed by a segmentation task will have it’s project type set as: ‘detection_to_segmentation’
- Returns:
string containing the project type
- deidentify() None
Remove all unique database ID’s from the project, pipeline and datasets.
- Returns:
- prepare_for_post() None
Set all fields to None that are not valid for making a POST request to the /projects endpoint.
- Returns:
- to_dict() Dict[str, Any]
Convert the project to a dictionary representation.
- Returns:
Dictionary holding the project data
- get_labels_per_task(include_empty: bool = True) List[List[Dict[str, Any]]]
Return a nested list containing the labels for each task in the project. Each entry in the outermost list corresponds to a trainable task in the project.
- Parameters:
include_empty – True to include empty labels in the output, False to exclude them
- Returns:
- get_parameters() Dict[str, str | List[str]]
Return the parameters used to create the project.
- Returns:
Dictionary containing the keys project_name, project_type and labels
- get_all_labels() List[Label]
Return a list of all labels in the project.
- Returns:
List of all labels in the project
- property overview: str
Return a string that shows an overview of the project. This still shows all the detailed information of the project. If less details are required, please use the summary property
- Returns:
String holding an overview of the project
- property summary: str
Return a string that gives a very brief summary of the project. This is the least detailed representation of the project, if more details are required please use the overview property
- Returns:
String holding a brief summary of the project
- property training_dataset: Dataset
Return a training dataset for the project.
- Returns:
Training dataset for the project
Annotation-related entities
- class geti_sdk.data_models.label.LabelSource(user_id: str | None = None, model_id: str | None = None, model_storage_id: str | None = None)
Representation of a source for a ScoredLabel in GETi
- Variables:
user_id – ID of the user who assigned the label, if any
model_id – ID of the model which generated the label, if any
model_storage_id – ID of the model storage to which the model belongs
- user_id: str | None
- model_id: str | None
- model_storage_id: str | None
- class geti_sdk.data_models.label.Label(name: str, color: str, group: str, is_empty: bool, hotkey: str = '', domain: Domain | None = None, id: str | None = None, parent_id: str | None = None, is_anomalous: bool | None = None)
Representation of a Label in GETi.
- Variables:
name – Name of the label
id – Unique database ID of the label
color – Color (in hex representation) of the label
group – Name of the label group to which the label belongs
is_empty – True if the label represents an empty label, False otherwise
parent_id – Optional name of the parent label, if any
- name: str
- color: str
- group: str
- is_empty: bool
- hotkey: str
- id: str | None
- parent_id: str | None
- is_anomalous: bool | None
- prepare_for_post() None
Set all fields to None that are not valid for making a POST request to the /projects endpoint.
- Returns:
- property color_tuple: Tuple[int, int, int]
Return the color of the label as an RGB tuple.
- Returns:
- class geti_sdk.data_models.label.ScoredLabel(probability, name: str | None = None, color: str | None = None, id: str | None = None, source: LabelSource | None = None)
Representation of a Label with an assigned probability in GETi.
- Variables:
name – Name of the label
id – Unique database ID of the label
color – Color (in hex representation) of the label
probability
source
- probability: float
- name: str | None
- color: str | None
- id: str | None
- source: LabelSource | None
- property color_tuple: Tuple[int, int, int]
Return the color of the label as an RGB tuple.
- Returns:
- classmethod from_label(label: Label, probability: float) ScoredLabel
Create a ScoredLabel instance from an input Label and probability score.
- Parameters:
label – Label to convert to ScoredLabel
probability – probability score for the label
- Returns:
ScoredLabel instance corresponding to label and probability
- class geti_sdk.data_models.shapes.Shape(type: str | ShapeType)
Representation of a shape in on the Intel® Geti™ platform.
- Variables:
type – Type of the shape
- type: str
- abstract to_roi() Rectangle
Return the bounding box containing the shape, as an instance of the Rectangle class.
- Returns:
Rectangle representing the bounding box for the shape
- abstract to_absolute_coordinates(parent_roi: Rectangle) Shape
Convert the Shape to absolute coordinates, given the rectangle representing it’s parent region of interest.
- Parameters:
parent_roi – Region of interest containing the shape
- Returns:
Shape converted to the coordinate system of it’s parent roi
- abstract to_normalized_coordinates(image_width: int, image_height: int) Dict[str, Any]
Convert the Shape to a normalized coordinate system, such that all coordinates are represented as floats in the interval [0, 1].
- Parameters:
image_width – Width (in pixels) of the image or region with respect to which the shape coordinates should be normalized.
image_height – Height (in pixels) of the image or region with respect to which the shape coordinates should be normalized
- Returns:
Dictionary representing the Shape object with it’s coordinates normalized with respect to image_width and image_height
- abstract property area: float
Return the area of the shape, given in number of pixels.
- Returns:
Area of the shape, in pixels
- class geti_sdk.data_models.shapes.Rectangle(x: float, y: float, width: float, height: float, *, type: str | ShapeType = ShapeType.RECTANGLE)
Representation of a Rectangle on the Intel® Geti™ platform, as used in the /annotations REST endpoints.
NOTE: All coordinates and dimensions are given in pixels
- Variables:
x – X coordinate of the left side of the rectangle
y – Y coordinate of the top of the rectangle
width – Width of the rectangle
height – Height of the rectangle
- x: int
- y: int
- width: int
- height: int
- type: str
- to_normalized_coordinates(image_width: int, image_height: int) Dict[str, float]
Get the normalized coordinates of the rectangle, with respect to the image with dimensions image_width x image_height.
- Parameters:
image_width – Width of the image to which the coordinates should be normalized
image_height – Height of the image to which the coordinates should be normalized
- Returns:
Dictionary containing the rectangle, represented in normalized coordinates
- is_full_box(image_width: int, image_height: int) bool
Return True if this Rectangle represents a box containing the full image.
- Parameters:
image_width – Width of the image to check for
image_height – Height of the image to check for
- Returns:
True if the Rectangle encompasses the full image, False otherwise
- to_roi() Rectangle
Return the bounding box containing the shape, as an instance of the Rectangle class.
- Returns:
Rectangle representing the bounding box for the shape
- to_absolute_coordinates(parent_roi: Rectangle) Rectangle
Convert the Rectangle to absolute coordinates, given the rectangle representing it’s parent region of interest.
- Parameters:
parent_roi – Region of interest containing the rectangle
- Returns:
Rectangle converted to the coordinate system of it’s parent
- property area: float
Return the area of the Rectangle, in pixels.
- Returns:
- property x_max: int
Return the value of the maximal x-coordinate that the Rectangle instance touches.
- Returns:
Maximum x-coordinate for the rectangle
- property y_max: int
Return the value of the maximal y-coordinate that the Rectangle instance touches.
- Returns:
Maximum y-coordinate for the rectangle
- classmethod generate_full_box(image_width: int, image_height: int) Rectangle
Return a rectangle that fully encapsulates the image.
- Parameters:
image_width – Width of the image to which the rectangle applies (in pixels)
image_height – Height of the image to which the rectangle applies (in pixels)
- Returns:
Rectangle: A rectangle that fully encapsulates the image.
- class geti_sdk.data_models.shapes.Ellipse(x: float, y: float, width: float, height: float, *, type: str | ShapeType = ShapeType.ELLIPSE)
Representation of an Ellipse on the Intel® Geti™ platform, as used in the /annotations REST endpoints.
NOTE: All coordinates and dimensions are given in pixels
- Variables:
x – Lowest x coordinate of the ellipse
y – Lowest y coordinate of the ellipse
width – Width of the ellipse
height – Height of the ellipse
- x: int
- y: int
- width: int
- height: int
- type: str
- to_roi() Rectangle
Return the bounding box containing the Ellipse, as an instance of the Rectangle class.
- Returns:
Rectangle representing the bounding box for the ellipse
- to_absolute_coordinates(parent_roi: Rectangle) Ellipse
Convert the Ellipse to absolute coordinates, given the rectangle representing it’s parent region of interest.
- Parameters:
parent_roi – Region of interest containing the ellipse
- Returns:
Ellipse converted to the coordinate system of it’s parent
- to_normalized_coordinates(image_width: int, image_height: int) Dict[str, float]
Get the normalized coordinates of the ellipse, with respect to the image with dimensions image_width x image_height.
- Parameters:
image_width – Width of the image to which the coordinates should be normalized
image_height – Height of the image to which the coordinates should be normalized
- Returns:
Dictionary containing the ellipse, represented in normalized coordinates
- get_center_point() Tuple[int, int]
Return the coordinates of the center of the ellipse.
- Returns:
Tuple of integers representing the coordinates of the center of the ellipse
- property area: float
Return the area of the Ellipse, in pixels.
- Returns:
- property x_max: int
Return the value of the maximal x-coordinate that the Ellipse instance touches.
- Returns:
Maximum x-coordinate for the ellipse
- property y_max: int
Return the value of the maximal y-coordinate that the Ellipse instance touches.
- Returns:
Maximum y-coordinate for the ellipse
- class geti_sdk.data_models.shapes.Point(x: float, y: float)
Representation of a point on a 2D coordinate system. Used to define Polygons on the Intel® Geti™ platform.
NOTE: All coordinates are defined in pixels
- Variables:
x – X coordinate of the point
y – Y coordinate of the point
- x: int
- y: int
- as_int_tuple() Tuple[int, int]
Return the coordinates of the point as a tuple of integers.
- Returns:
Tuple of integers representing the coordinates of the point
- class geti_sdk.data_models.shapes.Polygon(points: List[Point], *, type: str | ShapeType = ShapeType.POLYGON)
Representation of a polygon on the Intel® Geti™ platform, as used in the /annotations REST endpoints.
- Variables:
points – List of Points that make up the polygon
- type: str
- points_as_contour() ndarray
Return the list of points for this Polygon as a numpy array representing contour points that can be plotted by openCV’s drawContours function.
NOTE: the contour is cached, to avoid going over the list of points twice. If the polygon is modified the cache has to be cleared. It is recommended to create a new polygon instead
- Returns:
Numpy array containing the contour
- to_roi() Rectangle
Return the bounding box containing the Polygon, as an instance of the Rectangle class.
- Returns:
Rectangle representing the bounding box for the polygon
- to_absolute_coordinates(parent_roi: Rectangle) Polygon
Convert the Polygon to absolute coordinates, given the rectangle representing it’s parent region of interest.
- Parameters:
parent_roi – Region of interest containing the polygon
- Returns:
Polygon converted to the coordinate system of it’s parent ROI
- to_normalized_coordinates(image_width: int, image_height: int) Dict[str, List[Dict[str, float]] | str]
Get the normalized coordinates of the polygon, with respect to the image with dimensions image_width x image_height.
- Parameters:
image_width – Width of the image to which the coordinates should be normalized
image_height – Height of the image to which the coordinates should be normalized
- Returns:
Dictionary containing the polygon, represented in normalized coordinates
- property area: float
Return the area of the Polygon, in pixels.
- Returns:
area of the polygon
- property x_max: int
Return the maximum x-coordinate of the Polygon, in pixels
- Returns:
largest x-coordinate that the polygon touches
- property y_max: int
Return the maximum y-coordinate of the Polygon, in pixels
- Returns:
largest y-coordinate that the polygon touches
- fit_rotated_rectangle() RotatedRectangle
Fit a RotatedRectangle object around the Polygon, such that the area spanned by the rectangle is minimal.
- Returns:
RotatedRectangle object with minimal area, which encloses the Polygon
- class geti_sdk.data_models.shapes.RotatedRectangle(angle: float, x: float, y: float, width: float, height: float, *, type: str | ShapeType = ShapeType.ROTATED_RECTANGLE)
Representation of a RotatedRectangle on the Intel® Geti™ platform, as used in the /annotations REST endpoints.
NOTE: All coordinates and dimensions are specified in pixels
- Variables:
angle – angle, in degrees, under which the rectangle is defined.
x – X coordinate of the center of the rectangle
y – Y coordinate of the center of the rectangle
width – Width of the rectangle
height – Height of the rectangle
- angle: float
- x: int
- y: int
- width: int
- height: int
- type: str
- property x_max: float
Return the value of the maximal x-coordinate that the rotated rectangle touches.
- Returns:
Maximum x-coordinate for the rotated rectangle
- property x_min: float
Return the value of the minimal x-coordinate that the rotated rectangle touches.
- Returns:
Minimum x-coordinate for the rotated rectangle
- property y_max: float
Return the value of the maximal y-coordinate that the rotated rectangle touches.
- Returns:
Maximum y-coordinate for the rotated rectangle
- property y_min
Return the value of the minimal y-coordinate that the rotated rectangle touches.
- Returns:
Minimum y-coordinate for the rotated rectangle
- classmethod from_polygon(polygon: Polygon) RotatedRectangle
Create a :py:class`~geti_sdk.data_models.shapes.RotatedRectangle` from the Polygon entity passed.
NOTE: The Polygon MUST consist of 4 points, otherwise a ValueError is raised
- Parameters:
polygon – Polygon entity to convert from
- Returns:
Rectangle instance created according to the polygon object
- to_roi() Rectangle
Return the bounding box containing the RotatedRectangle, as an instance of the Rectangle class.
- Returns:
Rectangle representing the bounding box for the rotated_rectangle
- to_absolute_coordinates(parent_roi: Rectangle) RotatedRectangle
Convert the RotatedRectangle to absolute coordinates, given the rectangle representing it’s parent region of interest.
- Parameters:
parent_roi – Region of interest containing the rotated rectangle
- Returns:
RotatedRectangle converted to the coordinate system of it’s parent ROI
- to_polygon() Polygon
Convert the RotatedRectangle instance to a Polygon consisting of 4 points.
- Returns:
Polygon object corresponding to the RotatedRectangle instance
- to_normalized_coordinates(image_width: int, image_height: int) Dict[str, float | str]
Get the normalized coordinates of the rotated rectangle, with respect to the image with dimensions image_width x image_height.
- Parameters:
image_width – Width of the image to which the coordinates should be normalized
image_height – Height of the image to which the coordinates should be normalized
- Returns:
Dictionary containing the rotated rectangle, represented in normalized coordinates
- property area: float
Return the area of the RotatedRectangle, in pixels
- Returns:
area enclosed by the rotated rectangle in pixels
- class geti_sdk.data_models.annotations.Annotation(labels: List[ScoredLabel], shape: Rectangle | Ellipse | Polygon | RotatedRectangle, modified: str | datetime | None = None, id: str | None = None, labels_to_revisit: List[str] | None = None)
Representation of a single annotation for a media item on the Intel® Geti™ platform.
- Variables:
labels – List of labels belonging to the annotation
modified – Date and time of the last modification made to this annotation
shape – Shape of the annotation
id – Unique database ID assigned to the annotation
labels_to_revisit – Optional list of database ID’s of the labels that may not be up to date and therefore need to be revisited for this annotation
- labels: List[ScoredLabel]
- shape: Rectangle | Ellipse | Polygon | RotatedRectangle
- modified: str | None
- id: str | None
- labels_to_revisit: List[str] | None
- deidentify() None
Remove all unique database ID’s from the annotation and the entities it contains
- property label_names: List[str]
Return a list of label names for this Annotation.
- append_label(label: ScoredLabel) None
Add a label to the list of labels belonging to this annotation.
- Parameters:
label
- Returns:
- extend_labels(labels: List[ScoredLabel]) None
Add a list of labels to the labels already attached to this annotation.
- Parameters:
labels – List of ScoredLabels to add
- Returns:
- pop_label_by_name(label_name: str) None
Remove a label from the list of labels belonging to this annotation.
- Parameters:
label_name – Name of the label to remove from the list
- Returns:
- map_labels(labels: Sequence[ScoredLabel | Label]) Annotation
Attempt to map the labels found in labels to those in the Annotation instance. Labels are matched by name. This method will return a new Annotation object.
- Parameters:
labels – Labels to which the existing labels should be mapped
- Returns:
Annotation with updated labels, corresponding to those found in the project (if matching labels were found)
- class geti_sdk.data_models.annotation_scene.AnnotationScene(annotations: List[Annotation], kind: str | AnnotationKind = AnnotationKind.ANNOTATION, media_identifier: ImageIdentifier | VideoFrameIdentifier | None = None, id: str | None = None, modified: str | datetime | None = None, labels_to_revisit_full_scene: List[str] | None = None, annotation_state_per_task: List[TaskAnnotationState] | None = None)
Representation of an annotation scen for a certain media entity in GETi. An annotation scene holds all annotations for that specific media entity.
- Variables:
annotations – List of :py:class:`~geti_sdk.data_models.annotations.Annotation`s belonging to the media entity
id – unique database ID of the AnnotationScene in GETi
kind –
AnnotationKind
of the annotation (Annotation or Prediction)media_identifier – Identifier of the media entity to which this AnnotationScene applies
modified – Date and time at which this AnnotationScene was last modified
labels_to_revisit_full_scene – Optional list of database ID’s of the labels that may not be up to date and therefore need to be revisited for this AnnotationScene.
annotation_state_per_task – Optional dictionary holding the annotation state for this AnnotationScene for each task in the project pipeline.
- annotations: List[Annotation]
- kind: str
- media_identifier: ImageIdentifier | VideoFrameIdentifier | None
- id: str | None
- modified: str | None
- labels_to_revisit_full_scene: List[str] | None
- annotation_state_per_task: List[TaskAnnotationState] | None
- property has_data: bool
Return True if this AnnotationScene has annotation associated with it.
- deidentify() None
Remove all unique database ID’s from the annotationscene and the entities it contains.
- prepare_for_post() None
Remove all fields that are not valid for making a POST request to the /annotations endpoint.
- Returns:
- append(annotation: Annotation) None
Add an annotation to the annotation scene.
- Parameters:
annotation – Annotation to add
- get_by_shape(shape: Shape) Annotation | None
Return the annotation belonging to a specific shape. Returns None if no Annotation is found for the shape.
- Parameters:
shape – Shape to return the annotation for
- Returns:
- extend(annotations: List[Annotation])
Extend the list of annotations in the AnnotationScene with additional entries in the annotations list.
- Parameters:
annotations – List of Annotations to add to the AnnotationScene
- Returns:
- to_dict() Dict[str, Any]
Convert the AnnotationScene to a dictionary representation.
- Returns:
Dictionary holding the annotation scene data
- property overview: str
Return a string that gives an overview of the annotation scene.
- Returns:
overview string of the annotation scene
- as_mask(media_information: MediaInformation) ndarray
Convert the shapes in the annotation scene to a mask that can be overlayed on an image.
- Parameters:
media_information – MediaInformation object containing the width and height of the image for which the mask should be generated.
- Returns:
np.ndarray holding the mask representation of the annotation scene
- get_labels() List[Label]
Return a list of all labels present in the annotation scene.
- Returns:
List of labels
- get_label_names() List[str]
Return a list with the unique label names in the annotation scene.
- Returns:
List of label names
- apply_identifier(media_identifier: ImageIdentifier | VideoFrameIdentifier) AnnotationScene
Apply a media_identifier to the current AnnotationScene instance, such that the GETi cluster will recognize this AnnotationScene as belonging to the media item identified by the media_identifier.
This method creates and returns a new AnnotationScene instance. The instance on which this method is called remains unmodified.
- Parameters:
media_identifier – Image or VideoFrame identifier to apply
- Returns:
new AnnotationScene instance with the identifiers set according to media_identifier
- map_labels(labels: Sequence[ScoredLabel | Label]) AnnotationScene
Attempt to map the labels found in labels to those in the AnnotationScene instance. Labels are matched by name. This method will return a new AnnotationScene object.
- Parameters:
labels – Labels to which the existing labels should be mapped
- Returns:
AnnotationScene with updated labels, corresponding to those found in the project (if matching labels were found)
- filter_annotations(labels: Sequence[Label | ScoredLabel | str]) AnnotationScene
Filter annotations in the scene to only include labels that are present in the provided list of labels.
- Parameters:
labels – List of labels or label names to filter the scene with
- Returns:
AnnotationScene with filtered annotations
Configuration-related entities
- class geti_sdk.data_models.configurable_parameter.ConfigurableParameter(name: str, value: str | bool | float | int, data_type: str | EnumType | None = None, default_value: str | bool | float | int | None = None, description: str | None = None, editable: bool | None = None, header: str | None = None, template_type: str | EnumType | None = None, ui_rules: Dict[str, Any] | None = None, warning: str | None = None)
Representation of a generic configurable parameter in GETi.
- Variables:
data_type – Data type for the parameter. Can be integer, float, string or boolean
default_value – Default value for the parameter
description – Human readable description of the parameter
editable – Boolean indicating whether this parameter is editable (True) or not (False)
header – Human readable name for the parameter
name – system name for the parameter
template_type – Indicates whether the parameter takes free input (input) or the value has to be selected from a list of options (selectable)
value – The current value for the parameter
ui_rules – Dictionary representing rules for logic processing in the UI, based on parameter values
warning – Optional warning message pointing out possible risks of changing the parameter
- name: str
- value: str | bool | float | int
- data_type: str | None
- default_value: str | bool | float | int | None
- description: str | None
- editable: bool | None
- header: str | None
- template_type: str | None
- ui_rules: Dict[str, Any] | None
- warning: str | None
- to_dict() Dict[str, Any]
Return the dictionary representation of the ConfigurableParameter object.
- property summary: str
Return a string containing a very brief summary of the ConfigurableParameter object.
- Returns:
string holding a very short summary of the ConfigurableParameter
- property overview: str
Return a string that shows an overview of the configurable parameter. This still shows all the metadata of the parameter. If less details are required, please use the summary property
- Returns:
String holding an overview of the configurable parameter
- class geti_sdk.data_models.configurable_parameter.ConfigurableBoolean(name: str, data_type: str | EnumType | None = None, description: str | None = None, editable: bool | None = None, header: str | None = None, template_type: str | EnumType | None = None, ui_rules: Dict[str, Any] | None = None, warning: str | None = None, *, default_value: bool | None = None, value: bool)
Representation of a configurable boolean in GETi.
- default_value: bool | None
- value: bool
- class geti_sdk.data_models.configurable_parameter.ConfigurableInteger(name: str, data_type: str | EnumType | None = None, description: str | None = None, editable: bool | None = None, header: str | None = None, template_type: str | EnumType | None = None, ui_rules: Dict[str, Any] | None = None, warning: str | None = None, *, default_value: int | None = None, value: int, min_value: int | None = None, max_value: int | None = None)
Representation of a configurable integer in GETi.
- Variables:
min_value – Minimum value allowed to be set for the configurable integer
max_value – Maximum value allowed to be set for the configurable integer
- default_value: int | None
- value: int
- min_value: int | None
- max_value: int | None
- class geti_sdk.data_models.configurable_parameter.ConfigurableFloat(name: str, data_type: str | EnumType | None = None, description: str | None = None, editable: bool | None = None, header: str | None = None, template_type: str | EnumType | None = None, ui_rules: Dict[str, Any] | None = None, warning: str | None = None, *, default_value: float | None = None, value: float, min_value: float, max_value: float, step_size: float | None = None)
Representation of a configurable float in GETi.
- Variables:
min_value – Minimum value allowed to be set for the configurable float
max_value – Maximum value allowed to be set for the configurable float
- default_value: float | None
- value: float
- min_value: float
- max_value: float
- step_size: float | None
- class geti_sdk.data_models.configurable_parameter.SelectableFloat(name: str, data_type: str | EnumType | None = None, description: str | None = None, editable: bool | None = None, header: str | None = None, template_type: str | EnumType | None = None, ui_rules: Dict[str, Any] | None = None, warning: str | None = None, *, default_value: float | None = None, value: float, options: List[float])
Representation of a float selectable configurable parameter in GETi.
- Variables:
options – List of options that the selectable float is allowed to take
- default_value: float | None
- value: float
- options: List[float]
- class geti_sdk.data_models.configurable_parameter.SelectableString(name: str, data_type: str | EnumType | None = None, description: str | None = None, editable: bool | None = None, header: str | None = None, template_type: str | EnumType | None = None, ui_rules: Dict[str, Any] | None = None, warning: str | None = None, *, default_value: str | None = None, enum_name: str, value: str, options: List[str])
Representation of a string selectable configurable parameter in GETi.
- Variables:
options – List of options that the selectable string is allowed to take
- default_value: str | None
- enum_name: str
- value: str
- options: List[str]
- class geti_sdk.data_models.configurable_parameter_group.ParameterGroup(header: str, type: str | EnumType, description: str | None = None, parameters: Sequence[SelectableFloat | SelectableString | ConfigurableFloat | ConfigurableInteger | ConfigurableBoolean] | None = None, name: str | None = None, groups: List[ParameterGroup] | None = None)
Representation of a group of configurable parameters in GETi, as returned by the /configuration endpoints.
- Variables:
header – Human readable name for the parameter group
type – Type of the parameter group
name – name by which the parameter group is identified in the system
parameters – List of configurable parameters
groups – List of parameter groups
- header: str
- type: str
- description: str | None
- parameters: Sequence[SelectableFloat | SelectableString | ConfigurableFloat | ConfigurableInteger | ConfigurableBoolean] | None
- name: str | None
- groups: List[ParameterGroup] | None
- to_dict() Dict[str, Any]
Return the dictionary representation of the ParameterGroup
- classmethod from_dict(input_dict: Dict[str, Any]) ParameterGroup
Create a ParameterGroup object from an input dictionary.
- Parameters:
input_dict – Dictionary to create the parameter group from
- Returns:
ParameterGroup instance corresponding to the data received in input_dict
- deidentify() None
Remove all identifier fields from the ParameterGroup
- parameter_names(get_nested: bool = True) List[str]
Return a list of names of all parameters in the ParameterGroup.
- Parameters:
get_nested – True to include parameter names in nested ParameterGroups belonging to this group as well. False to only consider this groups’ parameters
- Returns:
List of parameter names
- get_parameter_group_by_name(name: str) ParameterGroup | None
Return the parameter group named name, if it belongs to this ParameterGroup or any of it’s nested groups.
If no group by name is found, this method returns None
- Parameters:
name – Name of the parameter group to look for
- Returns:
ParameterGroup named name, if any group by that name is found. None otherwise
- get_parameter_by_name(name: str, group_name: str | None = None) SelectableFloat | SelectableString | ConfigurableFloat | ConfigurableInteger | ConfigurableBoolean | None
Get the data for the configurable parameter named name from the ParameterGroup. This method returns None if no parameter by that name was found
- Parameters:
name – Name of the parameter to get
group_name – Optional name of the parameter group to which the parameter belongs. If None is specified (the default), this method looks in all parameter groups belonging to this group.
- Returns:
ConfigurableParameter object representing the parameter named name
- get_group_containing(parameter_name: str) ParameterGroup | None
Return the parameter group that contains the parameter specified in parameter_name. If no group containing the parameter is found, this method returns None
- Parameters:
parameter_name – Name of the parameter for which to retrieve the group
- Returns:
ParameterGroup containing the parameter by name parameter_name
- property summary: str
Return a string containing a very brief summary of the ParameterGroup.
- Returns:
string holding a very short summary of the ParameterGroup
- class geti_sdk.data_models.configuration_identifiers.EntityIdentifier(type: str | EnumType, workspace_id: str | None = None)
Identifying information for a configurable entity on the Intel® Geti™ platform, as returned by the /configuration endpoint.
- Variables:
workspace_id – ID of the workspace to which the entity belongs
type – Type of the configuration
- type: str
- workspace_id: str | None
- to_dict() Dict[str, Any]
Return the dictionary representation of the EntityIdentifier.
- Returns:
Dictionary representing the EntityIdentifier
- class geti_sdk.data_models.configuration_identifiers.HyperParameterGroupIdentifier(type: str | EnumType, workspace_id: str | None = None, model_storage_id: str | None = None, project_id: str | None = None, algorithm_name: str | None = None, model_template_id: str | None = None, *, group_name: str)
Identifying information for a HyperParameterGroup on the Intel® Geti™ platform, as returned by the /configuration endpoint.
- Variables:
model_storage_id – ID of the model storage to which the hyper parameter group belongs
group_name – Name of the hyper parameter group
- group_name: str
- model_storage_id: str | None
- project_id: str | None
- algorithm_name: str | None
- model_template_id: str | None
- class geti_sdk.data_models.configuration_identifiers.ComponentEntityIdentifier(type: str | EnumType, workspace_id: str | None = None, project_id: str | None = None, task_id: str | None = None, *, component: str)
Identifying information for a configurable Component on the Intel® Geti™ platform, as returned by the /configuration endpoint.
- Variables:
component – Name of the component
project_id – ID of the project to which the component belongs
task_id – Optional ID of the task to which the component belongs
- component: str
- project_id: str | None
- task_id: str | None
- class geti_sdk.data_models.configuration.ConfigurableParameters(header: str, type: str | EnumType, description: str | None = None, parameters: Sequence[SelectableFloat | SelectableString | ConfigurableFloat | ConfigurableInteger | ConfigurableBoolean] | None = None, name: str | None = None, groups: List[ParameterGroup] | None = None, *, entity_identifier: HyperParameterGroupIdentifier | ComponentEntityIdentifier, id: str | None = None)
Representation of configurable parameters in GETi, as returned by the /configuration endpoint
- Variables:
entity_identifier – Identification information for the entity to which the configurable parameters apply
id – Unique database ID of the configurable parameters
- entity_identifier: HyperParameterGroupIdentifier | ComponentEntityIdentifier
- id: str | None
- deidentify() None
Remove all unique database ID’s from the configurable parameters
- class geti_sdk.data_models.configuration.Configuration(components: List[ConfigurableParameters])
Representation of a set of configurable parameters in GETi, that apply to a project or task.
- components: List[ConfigurableParameters]
- to_dict() Dict[str, Any]
Return the dictionary representation of the Configuration.
- deidentify() None
Remove all unique database ID’s from the Configuration
- get_all_parameter_names() List[str]
Return a list of names of all configurable parameters within the task configuration.
- get_parameter_by_name(name: str) SelectableFloat | SelectableString | ConfigurableFloat | ConfigurableInteger | ConfigurableBoolean | None
Return the configurable parameter named name. If no parameter by that name is found within the Configuration, this method returns None
- Parameters:
name – Name of the parameter to get
- Returns:
ConfigurableParameter object
- property component_configurations: List[ConfigurableParameters]
Return all configurable parameters that are component-related.
- Returns:
- get_component_configuration(component: str) ConfigurableParameters | None
Return the configurable parameters for a certain component. If no configuration is found for the specified component, this method returns None
- Parameters:
component – Name of the component to get the configuration for
- Returns:
ConfigurableParameters for the component
- class geti_sdk.data_models.configuration.GlobalConfiguration(components: List[ConfigurableParameters])
Representation of the project-wide configurable parameters for a project in GETi.
- set_parameter_value(parameter_name: str, value: bool | float | int | str, group_name: str | None = None) List[Dict[str, Any]]
Prepare a dictionary that can be used for setting a parameter value in GETi.
- Parameters:
parameter_name – Name of the parameter to set
value – Value to set for the parameter
group_name – Optional name of the parameter group in which the parameter lives. If left as None (the default), this method will attempt to find the group automatically
- Returns:
Dictionary that can be passed directly to the /configuration POST endpoints to set the parameter value
- apply_identifiers(workspace_id: str, project_id: str)
Apply the unique database identifiers passed in workspace_id and project_id to all configurable parameters in the GlobalConfiguration.
- Parameters:
workspace_id – Workspace ID to assign
project_id – Project ID to assign
- Returns:
- property summary: str
Return a string containing a very brief summary of the GlobalConfiguration.
- Returns:
string holding a very short summary of the GlobalConfiguration
- class geti_sdk.data_models.configuration.TaskConfiguration(components: List[ConfigurableParameters], *, task_id: str | None = None, task_title: str)
Representation of the configurable parameters for a task in GETi.
- task_id: str | None
- task_title: str
- property model_configurations: List[ConfigurableParameters]
Return all configurable parameters that are model-related.
- Returns:
List of configurable parameters
- set_parameter_value(parameter_name: str, value: bool | float | int | str, group_name: str | None = None) Dict[str, Any]
Prepare a dictionary that can be used for setting a configurable parameter value in GETi.
- Parameters:
parameter_name – Name of the parameter to set
value – Value to set for the parameter
group_name – Optional name of the parameter group in which the parameter lives. If left as None (the default), this method will attempt to find the group automatically
- Returns:
Dictionary that can be passed directly to the /configuration POST endpoints to set the parameter value
- resolve_algorithm(algorithm: Algorithm)
Resolve the algorithm name and id of the model template for all hyper parameter groups in the task configuration.
- Parameters:
algorithm – Algorithm instance to which the hyper parameters belong
- Returns:
- apply_identifiers(workspace_id: str, project_id: str, task_id: str, model_storage_id: str)
Apply the unique database identifiers passed in workspace_id, project_id, task_id and model_storage_id to all configurable parameters in the TaskConfiguration.
- Parameters:
workspace_id – Workspace ID to assign
project_id – Project ID to assign
task_id – Task ID to assign
model_storage_id – Model storage ID to assign
- Returns:
- property summary: str
Return a string containing a very brief summary of the TaskConfiguration.
- Returns:
string holding a very short summary of the TaskConfiguration
- class geti_sdk.data_models.configuration.FullConfiguration(global_: GlobalConfiguration, task_chain: List[TaskConfiguration])
Representation of the full configuration (both global and task-chain) for a project in GETi.
- global_: GlobalConfiguration
- task_chain: List[TaskConfiguration]
- deidentify() None
Remove all unique database ID’s from the Configuration.
- to_dict() Dict[str, Any]
Return the dictionary representation of the FullConfiguration.
- property summary: str
Return a string containing a very brief summary of the FullConfiguration.
- Returns:
string holding a very short summary of the FullConfiguration
Model-related entities
- class geti_sdk.data_models.model.OptimizationCapabilities(is_nncf_supported: bool, is_filter_pruning_supported: bool | None = None, is_filter_pruning_enabled: bool | None = None)
Representation of the various model optimization capabilities in Intel Geti.
- is_nncf_supported: bool
- is_filter_pruning_supported: bool | None
- is_filter_pruning_enabled: bool | None
- class geti_sdk.data_models.model.ModelPurgeInfo(is_purged: bool, purge_time: str | None = None, user_uid: str | None = None)
Representation of the model soft deletion status. If is_purged==True, the model binaries (i.e. the trained weights) have been deleted from the server storage.
- is_purged: bool
- purge_time: str | None
- user_uid: str | None
- class geti_sdk.data_models.model.TrainingFramework(type: str, version: str)
Representation of the training framework used to train the model.
- type: str
- version: str
- class geti_sdk.data_models.model.OptimizationConfigurationParameter(name: str, value: Any)
Representation of a parameter for model optimization in Intel Geti.
- name: str
- value: Any
- class geti_sdk.data_models.model.BaseModel(name: str, precision: List[str], creation_date: str | datetime | None, latency: str | None = None, fps_throughput: float | None = None, purge_info: ModelPurgeInfo | None = None, size: int | None = None, target_device: str | None = None, target_device_type: str | None = None, previous_revision_id: str | None = None, previous_trained_revision_id: str | None = None, performance: Performance | None = None, id: str | None = None, label_schema_in_sync: bool | None = None, total_disk_size: int | None = None, training_framework: TrainingFramework | None = None, learning_approach: str | None = None)
Representation of the basic information for a Model or OptimizedModel in Intel Geti
- name: str
- precision: List[str]
- creation_date: str
- latency: str | None
- fps_throughput: float | None
- purge_info: ModelPurgeInfo | None
- size: int | None
- target_device: str | None
- target_device_type: str | None
- previous_revision_id: str | None
- previous_trained_revision_id: str | None
- performance: Performance | None
- id: str | None
- label_schema_in_sync: bool | None
- total_disk_size: int | None
- training_framework: TrainingFramework | None
- learning_approach: str | None
- property model_group_id: str | None
Return the unique database ID of the model group to which the model belongs, if available.
- Returns:
ID of the model group for the model
- property base_url: str | None
Return the base url that can be used to get the model details, download the model, etc., if available.
- Returns:
base url at which the model can be addressed. The url is defined relative to the ip address or hostname of the Intel® Geti™ server
- to_dict() Dict[str, Any]
Return the dictionary representation of the model.
- Returns:
- property overview: str
Return a string that represents an overview of the model.
- Returns:
- deidentify() None
Remove unique database IDs from the BaseModel.
- class geti_sdk.data_models.model.OptimizedModel(name: str, precision: List[str], creation_date: str | datetime | None, latency: str | None = None, fps_throughput: float | None = None, purge_info: ModelPurgeInfo | None = None, size: int | None = None, target_device: str | None = None, target_device_type: str | None = None, previous_revision_id: str | None = None, previous_trained_revision_id: str | None = None, performance: Performance | None = None, id: str | None = None, label_schema_in_sync: bool | None = None, total_disk_size: int | None = None, training_framework: TrainingFramework | None = None, learning_approach: str | None = None, model_format: str | None = None, has_xai_head: bool = False, *, model_status: str | EnumType, optimization_methods: List[str], optimization_objectives: Dict[str, Any], optimization_type: str | EnumType, version: int | None = None, configurations: List[OptimizationConfigurationParameter] | None = None)
Representation of an OptimizedModel in Intel® Geti™. An optimized model is a trained model that has been converted OpenVINO representation. This conversion may involve weight quantization, filter pruning, or other optimization techniques supported by OpenVINO.
- model_status: str
- optimization_methods: List[str]
- optimization_objectives: Dict[str, Any]
- optimization_type: str
- version: int | None
- configurations: List[OptimizationConfigurationParameter] | None
- model_format: str | None
- has_xai_head: bool
- class geti_sdk.data_models.model.Model(name: str, precision: List[str], creation_date: str | datetime | None, latency: str | None = None, fps_throughput: float | None = None, purge_info: ModelPurgeInfo | None = None, size: int | None = None, target_device: str | None = None, target_device_type: str | None = None, previous_revision_id: str | None = None, previous_trained_revision_id: str | None = None, performance: Performance | None = None, id: str | None = None, label_schema_in_sync: bool | None = None, total_disk_size: int | None = None, training_framework: TrainingFramework | None = None, learning_approach: str | None = None, labels: List[Label] | None = None, training_dataset_info: Dict[str, str] | None = None, *, architecture: str, score_up_to_date: bool | None = None, optimized_models: List[OptimizedModel], optimization_capabilities: OptimizationCapabilities | None = None, version: int | None = None)
Representation of a trained Model in Intel® Geti™.
- architecture: str
- score_up_to_date: bool | None
- optimized_models: List[OptimizedModel]
- optimization_capabilities: OptimizationCapabilities | None
- version: int | None
- training_dataset_info: Dict[str, str] | None
- property model_group_id: str | None
Return the unique database ID of the model group to which the model belongs, if available.
- Returns:
ID of the model group for the model
- classmethod from_dict(model_dict: Dict[str, Any]) Model
Create a Model instance from a dictionary holding the model data.
- Parameters:
model_dict – Dictionary representing a model
- Returns:
Model instance reflecting the data contained in model_dict
- classmethod from_file(filepath: str) Model
Create a Model instance from a .json file holding the model data.
- Parameters:
filepath – Path to a json file holding the model data
- Returns:
- get_optimized_model(optimization_type: str | None = None, precision: str | None = None, require_xai: bool = False) OptimizedModel | None
Return the OptimizedModel of the specified optimization_type or precision. The following optimization types are supported: ‘nncf’, ‘pot’, ‘onnx’, ‘mo’, openvino (case insensitive). The supported precision levels are FP32, FP16, INT8. Precision, optimization type or both can be specified.
- Parameters:
optimization_type – Optimization type for which to return the model
precision – Precision level for which to return the model. Can be FP32, FP16 or INT8
require_xai – If True, only include models that have an XAI head for saliency map generation. Defaults to False
- Returns:
OptimizedModel object representing the optimized model
- class geti_sdk.data_models.model_group.ModelSummary(name: str, creation_date: str | datetime | None, score_up_to_date: bool | None = None, purge_info: ModelPurgeInfo | None = None, size: int | None = None, version: int | None = None, score: float | None = None, performance: Performance | None = None, active_model: bool = False, id: str | None = None, model_storage_id: str | None = None, label_schema_in_sync: bool | None = None)
Representation of a Model on the Intel® Geti™ platform, containing only the minimal information about the model.
- Variables:
name – Name of the model
creation_date – Creation date of the model
version – Model version
score – Score that was achieved upon evaluation of the model on the test set
active_model – True if this model was the active model for the project it was created in, False if it was not the active model
id – Unique database ID of the model
model_storage_id – Unique database ID of the model storage (also referred to as model group) that this model belongs to
label_schema_in_sync – Boolean indicating whether the labels of the model are matching with the latest project labels
- name: str
- creation_date: str
- score_up_to_date: bool | None
- purge_info: ModelPurgeInfo | None
- size: int | None
- version: int | None
- score: float | None
- performance: Performance | None
- active_model: bool
- id: str | None
- model_storage_id: str | None
- label_schema_in_sync: bool | None
- class geti_sdk.data_models.model_group.ModelGroup(name: str, model_template_id: str, models: List[ModelSummary], task_id: str | None = None, id: str | None = None, learning_approach: str | None = None, lifecycle_stage: str | None = None)
Representation of a ModelGroup on the Intel® Geti™ server. A model group is a collection of models that all share the same neural network architecture, but may have been trained with different training datasets or hyper parameters.
- name: str
- model_template_id: str
- models: List[ModelSummary]
- task_id: str | None
- id: str | None
- learning_approach: str | None
- lifecycle_stage: str | None
- property has_trained_models: bool
Return True if the ModelGroup contains at least one trained model.
- Returns:
True if the model group holds at least one trained model, False otherwise
- get_latest_model() ModelSummary | None
Return the latest model in the model group.
- Returns:
summary information of the most recently model in the model group
- get_model_by_version(version: int) ModelSummary
Return the model with version version in the model group. If no model with the version is found, this method raises a ValueError.
- Parameters:
version – Number specifying the desired model version
- Returns:
ModelSummary instance with the specified version, if any
- get_model_by_creation_date(creation_date: datetime) ModelSummary
Return the model created on creation_date in the model group. If no model by that date is found, this method raises a ValueError
- Parameters:
creation_date – Datetime object representing the desired creation_date
- Returns:
ModelSummary instance with the specified creation_date, if any
- property algorithm: Algorithm | None
Return the details for the algorithm corresponding to the ModelGroup This property will return None unless the get_algorithm_details method is called to retrieve the algorithm information from the Intel® Geti™ server
- Returns:
Algorithm details, if available
- contains_model(model: ModelSummary | Model) bool
Return True if the model group contains the model.
- Parameters:
model – Model or ModelSummary object
- Returns:
True if the group contains the model, False otherwise
Media-related entities
- class geti_sdk.data_models.media.MediaInformation(display_url: str, height: int, width: int, extension: str | None = None, size: int | None = None)
Basic information about a media item in Intel® Geti™.
- Variables:
display_url – URL that can be used to download the full size media entity
height – Height of the media entity, in pixels
width – Width of the media entity, in pixels
size – Size of the media entity, in bytes
- display_url: str
- height: int
- width: int
- extension: str | None
- size: int | None
- class geti_sdk.data_models.media.VideoInformation(display_url: str, height: int, width: int, extension: str | None = None, size: int | None = None, *, duration: int, frame_count: int, frame_stride: int, frame_rate: float | None = None)
Basic information about a video entity in Intel® Geti™.
- Variables:
duration – Duration of the video
frame_count – Total number of frames in the video
frame_stride – Frame stride of the video
frame_rate – Frame rate of the video
- duration: int
- frame_count: int
- frame_stride: int
- frame_rate: float | None
- class geti_sdk.data_models.media.ImageInformation(display_url: str, height: int, width: int, extension: str | None = None, size: int | None = None)
Basic information about an image entity in Intel® Geti™
- class geti_sdk.data_models.media.VideoFrameInformation(display_url: str, height: int, width: int, extension: str | None = None, size: int | None = None, *, frame_index: int, video_id: str)
Basic information about a video frame in Intel® Geti™.
- frame_index: int
- video_id: str
- class geti_sdk.data_models.media.MediaItem(id: str, name: str, type: str | MediaType, upload_time: str | datetime | None, media_information: MediaInformation, annotation_state_per_task: List[TaskAnnotationState] | None = None, thumbnail: str | None = None, uploader_id: str | None = None, last_annotator_id: str | None = None)
Representation of a media entity in Intel® Geti™.
- Variables:
id – Unique database ID of the media entity
name – Filename of the media entity
type – MediaType of the entity
upload_time – Time and date at which the entity was uploaded to the system
thumbnail – URL that can be used to get a thumbnail for the media entity
annotation_state_per_task – Annotation state of the media entity
media_information – Container holding basic information such as width and height about the media entity
- Parameters:
last_annotator_id – the name or id of the editor.
- id: str
- name: str
- type: str
- upload_time: str
- media_information: MediaInformation
- annotation_state_per_task: List[TaskAnnotationState] | None
- thumbnail: str | None
- uploader_id: str | None
- last_annotator_id: str | None
- property download_url: str
Return the URL that can be used to download the full size media entity from the Intel® Geti™ server.
- Returns:
URL at which the media entity can be downloaded
- property base_url: str
Return the base URL for the media item, which is the URL pointing to the media details of the entity.
- Returns:
Base URL of the media entity
- property identifier: MediaIdentifier
Return the media identifier for the media item.
- Returns:
MediaIdentifier which uniquely identifies the media item.
- abstract get_data(session: GetiSession) ndarray | str
Get the pixel data for this MediaItem. Uses caching.
For Image and VideoFrames, this method will return a np.ndarray. For Video objects, this method will return a path-like string, pointing to the video on the local disk.
- Parameters:
session – REST session to the Intel® Geti™ server on which the MediaItem lives
- Raises:
ValueError – If the cache is empty and no data can be downloaded from the cluster
- Returns:
numpy array holding the pixel data for the MediaItem, or string pointing to the file location for Videos.
- to_dict() Dict[str, Any]
Convert the MediaItem to a dictionary representation.
- Returns:
Dictionary holding the annotation scene data
- property overview: str
Return a string holding an overview of the media item.
- Returns:
overview string of the media item
- class geti_sdk.data_models.media.Image(id: str, name: str, type: str | MediaType, upload_time: str | datetime | None, annotation_state_per_task: List[TaskAnnotationState] | None = None, thumbnail: str | None = None, uploader_id: str | None = None, last_annotator_id: str | None = None, *, media_information: ImageInformation, annotation_scene_id: str | None = None, roi_id: str | None = None)
Representation of an image in Intel® Geti™.
- Variables:
media_information – Container holding basic information such as width and height about the image entity
- media_information: ImageInformation
- annotation_scene_id: str | None
- roi_id: str | None
- property identifier: ImageIdentifier
Return the media identifier for the Image instance
- Returns:
ImageIdentifier object that contains the identifiers of the image
- get_data(session: GetiSession) ndarray
Get the pixel data for this Image. This method uses caching: If the cache is empty, it will download the data using the provided session. Otherwise it will return the cached data directly
NOTE: The pixel data will be returned in BGR channel order
- Parameters:
session – REST session to the Intel® Geti™ server on which the Image lives
- Raises:
ValueError – If the cache is empty and no data can be downloaded from the cluster
- Returns:
Numpy.ndarray holding the pixel data for this Image.
- property numpy: ndarray | None
Pixel data for the Image, as a numpy array of shape (width x heigth x 3). If this attribute is None, the pixel data should be downloaded from the cluster first using the get_data method
- Returns:
numpy.ndarray containing the pixel data
- id: str
- name: str
- type: str
- upload_time: str
- annotation_state_per_task: List[TaskAnnotationState] | None
- thumbnail: str | None
- uploader_id: str | None
- last_annotator_id: str | None
- class geti_sdk.data_models.media.VideoAnnotationStatistics(annotated: int, partially_annotated: int, unannotated: int)
Annotation statistics for a video in Intel® Geti™.
- Variables:
annotated – Number of frames in the video that have been fully annotated
partially_annotated – Number of frames in the video that have been partially annotated, meaning that one task in the task chain is still missing annotations
unannotated – Number of frames in the video that have not yet been annotated
- annotated: int
- partially_annotated: int
- unannotated: int
- class geti_sdk.data_models.media.Video(id: str, name: str, type: str | MediaType, upload_time: str | datetime | None, annotation_state_per_task: List[TaskAnnotationState] | None = None, thumbnail: str | None = None, uploader_id: str | None = None, last_annotator_id: str | None = None, *, media_information: VideoInformation, matched_frames: int | None = None, annotation_statistics: VideoAnnotationStatistics | None = None)
Representation of a video in Intel® Geti™.
- Variables:
media_information – Container holding basic information such as width, height and duration about the video entity
- media_information: VideoInformation
- matched_frames: int | None
- annotation_statistics: VideoAnnotationStatistics | None
- property identifier: VideoIdentifier
Return the media identifier for the Video instance.
- Returns:
VideoIdentifier object that contains the identifiers of the video
- get_data(session: GetiSession) str
Get the video data from the Intel® Geti™ server. Calling this method will download the video data to a temporary file, and returns the path to file.
- Parameters:
session – GetiSession object pointing to the instance from which the video should be downloaded.
- Returns:
Path to the temporary video file on local disk.
- to_frames(frame_stride: int | None = None, include_data: bool = False) List[VideoFrame]
Extract VideoFrames from the Video. Returns a list of VideoFrame objects.
- Parameters:
frame_stride – Stride to use for frame extraction. If left as None (the default), the frame_stride stored in the media_information is used.
include_data – True to include pixel data for the frames, if available.
- Returns:
List of VideoFrames constructed from the Video
- get_frame(frame_index: int) VideoFrame
Return a VideoFrame extracted from the Video, at the specified index.
This method loads the numpy data for the frame, if available.
- Parameters:
frame_index – Index of the frame to extract
- Returns:
VideoFrame at the specified index
- id: str
- name: str
- type: str
- upload_time: str
- annotation_state_per_task: List[TaskAnnotationState] | None
- thumbnail: str | None
- uploader_id: str | None
- last_annotator_id: str | None
- class geti_sdk.data_models.media.VideoFrame(id: str, name: str, type: str | MediaType, upload_time: str | datetime | None, annotation_state_per_task: List[TaskAnnotationState] | None = None, thumbnail: str | None = None, uploader_id: str | None = None, last_annotator_id: str | None = None, *, media_information: VideoFrameInformation, video_name: str | None = None)
Representation of a video frame in Intel® Geti™.
- Variables:
media_information – Container holding basic information such as width and height about the VideoFrame entity
data – Pixel data for the VideoFrame. If this is None, the data can be downloaded using the ‘get_data’ method
- media_information: VideoFrameInformation
- video_name: str | None
- classmethod from_video(video: Video, frame_index: int) VideoFrame
Create a VideoFrame entity from a video and a frame_index.
- Parameters:
video – Video to extract the VideoFrame from
frame_index – index at which the frame lives in the video
- Returns:
- property identifier: VideoFrameIdentifier
Return the media identifier for the VideoFrame instance.
- Returns:
VideoFrameIdentifier object that contains the identifiers of the video frame
- property numpy: ndarray | None
Pixel data for the Image, as a numpy array of shape (width x heigth x 3). If this attribute is None, the pixel data should be downloaded from the cluster first using the get_data method
- Returns:
numpy.ndarray containing the pixel data
- get_data(session: GetiSession) ndarray
Get the pixel data for this VideoFrame. This method uses caching: If the cache is empty, it will download the data using the provided session. Otherwise it will return the cached data directly
- Parameters:
session – REST session to the Intel® Geti™ server on which the VideoFrame lives
- Raises:
ValueError – If the cache is empty and no data can be downloaded from the cluster
- Returns:
Numpy.ndarray holding the pixel data for this VideoFrame.
- id: str
- name: str
- type: str
- upload_time: str
- annotation_state_per_task: List[TaskAnnotationState] | None
- thumbnail: str | None
- uploader_id: str | None
- last_annotator_id: str | None
- class geti_sdk.data_models.media_identifiers.MediaIdentifier(type: str | MediaType)
Representation of media identification data as output by the Intel® Geti™ /annotations REST endpoints.
- Variables:
type – Type of the media to which the annotation belongs
- type: str
- to_dict() Dict[str, str]
Return a dictionary form of the MediaIdentifier instance.
- Returns:
Dictionary containing the media identifier data
- class geti_sdk.data_models.media_identifiers.ImageIdentifier(type: str | MediaType, image_id: str)
Representation of image identification data used by the Intel® Geti™ /annotations endpoints. This object uniquely identifies an Image on the Intel® Geti™ server.
- Variables:
image_id – unique database ID of the image
- image_id: str
- class geti_sdk.data_models.media_identifiers.VideoFrameIdentifier(type: str | MediaType, frame_index: int, video_id: str, key_index: int | None = None)
Representation of video frame identification data used by the Intel® Geti™ /annotations endpoints. This object uniquely identifies a VideoFrame on the Intel® Geti™ server.
- Variables:
frame_index – Index of the video frame in the full video
video_id – unique database ID of the video to which the frame belongs
key_index – Index of the key frame in the video
- frame_index: int
- video_id: str
- key_index: int | None
- class geti_sdk.data_models.media_identifiers.VideoIdentifier(type: str | MediaType, video_id: str)
Representation of video identification data used by the Intel® Geti™ /annotations endpoints. This object uniquely identifiers a Video on the Intel® Geti™ server.
- Variables:
video_id – unique database ID of the video
- video_id: str
Prediction-related entities
- class geti_sdk.data_models.predictions.ResultMedium(name: str, type: str | None = None, url: str | None = None, label_id: str | None = None, id: str | None = None, roi: Dict[str, Any] | None = None)
Representation of a single result medium in Intel® Geti™.
- Variables:
name – Name of the result medium option
type – Type of the result medium represented by this object
url – URL at which the full result medium can be downloaded
id – Unique database ID assigned to the result medium
label_id – Unique database ID of the label referenced by this result medium
- name: str
- type: str | None
- url: str | None
- label_id: str | None
- id: str | None
- roi: Dict[str, Any] | None
- label_name: str | None
- data: bytes | None
- resolve_label_name(labels: List[Label])
Add the label name to the result medium, by matching the label_id to a list of Labels.
- Parameters:
labels – List of Labels to get the name from
- get_data(session: GetiSession) bytes
Download the data belonging to this ResultMedium object.
- Parameters:
session – REST session to the Intel® Geti™ server from which this ResultMedium was generated
- Returns:
bytes object holding the data, if any is found
- property friendly_name: str
Return a human readable name with which the result medium can be identified.
- Returns:
friendly name for the result medium
- class geti_sdk.data_models.predictions.Prediction(annotations: List[Annotation], media_identifier: ImageIdentifier | VideoFrameIdentifier | None = None, id: str | None = None, modified: str | datetime | None = None, labels_to_revisit_full_scene: List[str] | None = None, annotation_state_per_task: List[TaskAnnotationState] | None = None, created: str | datetime | None = None, *, kind: str | AnnotationKind = AnnotationKind.PREDICTION, maps: List[ResultMedium] = NOTHING, feature_vector: ndarray | None = None)
Representation of the model predictions for a certain media entity in Intel® Geti™.
- Variables:
annotations – List of predictions belonging to the media entity
id – unique database ID of the Prediction in Intel® Geti™
kind – Kind of prediction (Annotation or Prediction)
media_identifier – Identifier of the media entity to which this Prediction applies
modified – Date and time at which this Prediction was last modified
maps – List of additional result media belonging to this prediction
feature_vector – Optional feature vector (produced by the model) for the image to which the prediction relates
active_score – Optional active score (produced by the model) for the image to which the prediction relates
- kind: str
- maps: List[ResultMedium]
- feature_vector: ndarray | None
- created: str | None
- resolve_labels_for_result_media(labels: List[Label]) None
Resolve the label names for all result media available with this Prediction.
- Parameters:
labels – List of Labels for the project, from which the names are taken
- deidentify() None
Remove all unique database ID’s from the prediction and the entities it contains.
- property has_result_media: bool
Return True if this Prediction has result media belonging to it, False otherwise.
- Returns:
True if there are result media belonging to the prediction
- get_result_media_data(session: GetiSession) List[ResultMedium]
Download the data for all result media belonging to this prediction.
- Parameters:
session – REST session to the Intel® Geti™ server from which this Prediction was generated
- Returns:
List of result media, that have their data downloaded from the cluster
- as_mask(media_information: MediaInformation, probability_threshold: float | None = None) ndarray
Convert the shapes in the prediction to a mask that can be overlayed on an image.
- Parameters:
media_information – MediaInformation object containing the width and heigth of the image for which the mask should be generated.
probability_threshold – Threshold (between 0 and 1) for the probability. Shapes that are predicted with a probability below this threshold will not be plotted in the mask. If left as None (the default), all predictions will be shown.
- Returns:
np.ndarray holding the mask representation of the prediction
- filter_by_confidence(confidence_threshold: float) Prediction
Return a new Prediction instance containing only those predicted annotations that have a confidence higher than confidence_threshold.
- Parameters:
confidence_threshold – Float between 0 and 1. Annotations that only have predicted labels with a probability lower than this value will be filtered out.
- Returns:
new Prediction object containing only annotations with a predicted probability higher than the confidence_threshold
Status- and job-related entities
- class geti_sdk.data_models.status.StatusSummary(progress: float, message: str | None = None)
Summary of the status of a project or task on the GETi cluster.
NOTE: the ‘message’ attribute was removed in Geti 1.1
- Variables:
progress – Training progress, if a model is being trained
message – Optional Human readable message describing the status
- progress: float
- message: str | None
- classmethod from_dict(status_dict: Dict[str, Any]) StatusSummary
Create a StatusSummary object from a dictionary.
- Parameters:
status_dict – Dictionary representing a status, as returned by the GETi /status and /jobs endpoints
- Returns:
StatusSummary object holding the status data contained in status_dict
- property user_friendly_message: str
Return a message describing the status in a human readable format
- class geti_sdk.data_models.status.LabelAnnotationRequirements(id: str, label_name: str, label_color: str, value: int)
Detailed information regarding the required number of annotations for a specific label.
- Variables:
id – Unique database ID of the label
label_name – Name of the label
label_color – Color of the label
value – Required number of annotations for this label
- id: str
- label_name: str
- label_color: str
- value: int
- class geti_sdk.data_models.status.AnnotationRequirements(details: List[LabelAnnotationRequirements], value: int)
Container holding the required number of annotations before auto-training can be triggered for a task in GETi.
- Variables:
value – Total number of required annotations for the task
details – Required annotations per label
- details: List[LabelAnnotationRequirements]
- value: int
- class geti_sdk.data_models.status.TaskStatus(id: str, is_training: bool, required_annotations: AnnotationRequirements, status: StatusSummary, title: str, n_new_annotations: int | None = None, ready_to_train: bool | None = None)
Status of a single task in GETi.
- Variables:
id – Unique database ID of the task
is_training – True if a training job is currently running for the task
required_annotations – AnnotationRequirements object that holds details related to the required number of annotations before auto-training will be started for the task
status – StatusSummary object that contains (among others) a human readable message describing the status of the task
title – Title of the taks
n_new_annotations – Number of new annotations that have been made for this task since its last training round. Only used in Geti v1.1 and up
- id: str
- is_training: bool
- required_annotations: AnnotationRequirements
- status: StatusSummary
- title: str
- n_new_annotations: int | None
- ready_to_train: bool | None
- class geti_sdk.data_models.status.ProjectStatus(is_training: bool, n_required_annotations: int, status: StatusSummary, tasks: List[TaskStatus], n_new_annotations: int | None = None, project_performance: Performance | None = None, n_running_jobs: int | None = None, n_running_jobs_project: int | None = None)
Status of a project in GETi.
- Parameters:
is_training – True if a training job is currently running for any of the tasks in the project
- Variables:
n_required_annotations – Total number of required annotations for the project, before auto-training can be started
status – StatusSummary object that contains (among others) a human readable message describing the status of the project
tasks – List of TaskStatus objects, detailing the status of each task in the project
n_new_annotations – Only used in Geti v1.1
- is_training: bool
- n_required_annotations: int
- status: StatusSummary
- tasks: List[TaskStatus]
- n_new_annotations: int | None
- project_performance: Performance | None
- n_running_jobs: int | None
- n_running_jobs_project: int | None
- property summary: str
Return a string that gives a very brief summary of the project status.
- Returns:
String holding a brief summary of the project status
- class geti_sdk.data_models.job.JobStatus(progress: float, message: str | None = None, *, state: str | EnumType)
Current status of a job on the Intel® Geti™ server.
- Variables:
state – Current state of the job
- state: str
- classmethod from_dict(status_dict: Dict[str, Any]) JobStatus
Create a JobStatus object from a dictionary.
- Parameters:
status_dict – Dictionary representing a status, as returned by the Intel® Geti™ /status and /jobs endpoints
- Returns:
JobStatus object holding the status data contained in status_dict
- class geti_sdk.data_models.job.TaskMetadata(model_architecture: str | None = None, model_template_id: str | None = None, model_version: int | None = None, name: str | None = None, dataset_storage_id: str | None = None, task_id: str | None = None)
Metadata related to a task on the Intel® Geti™ cluster.
- Variables:
name – Name of the task
model_template_id – Identifier of the model template used by the task
model_architecture – Name of the neural network architecture used for the model
model_version – Version of the model currently used by the job
dataset_storage_id – Unique database ID of the dataset storage used by the job
task_id – ID of the task to which the TaskStatus object applies. Only used in Geti v1.1 and up
- model_architecture: str | None
- model_template_id: str | None
- model_version: int | None
- name: str | None
- dataset_storage_id: str | None
- task_id: str | None
- class geti_sdk.data_models.job.TestMetadata(model_architecture: str, model_template_id: str, datasets: List[Dataset], model: dict | None = None)
Metadata related to a model test job on the GETi cluster.
- Variables:
model_template_id – Identifier of the model template used in the test
model_architecture – Name of the neural network architecture used for the model
datasets – List of dictionaries, each dictionary holding the id and name of a dataset used in the test
- model_architecture: str
- model_template_id: str
- datasets: List[Dataset]
- model: dict | None
- class geti_sdk.data_models.job.ProjectMetadata(name: str | None = None, id: str | None = None, type: str | None = None)
Metadata related to a project on the GETi cluster.
- Variables:
name – Name of the project
id – ID of the project
- name: str | None
- id: str | None
- type: str | None
- class geti_sdk.data_models.job.DatasetMetadata(name: str | None = None, id: str | None = None)
Metadata related to a dataset on the GETi cluster.
- Variables:
name – Name of the dataset
id – ID of the dataset
- name: str | None
- id: str | None
- class geti_sdk.data_models.job.ParametersMetadata(file_id: str | None = None)
Metadata related to a project import to the GETi cluster.
- Variables:
file_id – ID of the uploaded file
- file_id: str | None
- class geti_sdk.data_models.job.ModelMetadata(model_storage_id: str, model_id: str, model_activated: bool | None = None)
Metadata for a Job related to a model on the GETi cluster.
- Variables:
model_storage_id – ID of the model storage in which the model lives
model_id – ID of the model
model_activated – True if the model has been activated succesfully This is applicable after a training job. Defaults to None
- model_storage_id: str
- model_id: str
- model_activated: bool | None
- class geti_sdk.data_models.job.ScoreMetadata(task_id: str, score: float)
Metadata element containing scores for the tasks in the project
- Variables:
task_id – ID of the task for which the score was achieved
score – Performance score for the model for the task
- task_id: str
- score: float
- class geti_sdk.data_models.job.JobMetadata(task: TaskMetadata | None = None, project: ProjectMetadata | None = None, dataset: DatasetMetadata | None = None, parameters: ParametersMetadata | None = None, test: TestMetadata | None = None, base_model_id: str | None = None, model_storage_id: str | None = None, optimization_type: str | None = None, optimized_model_id: str | None = None, download_url: str | None = None, export_format: str | None = None, file_id: str | None = None, scores: List[ScoreMetadata] | None = None, trained_model: ModelMetadata | None = None, warnings: List[dict] | None = None, supported_project_types: List[dict] | None = None, project_id: str | None = None)
Metadata for a particular job on the GETi cluster.
- Variables:
task – TaskMetadata object holding information regarding the task from which the job originates
base_model_id – Optional unique database ID of the base model. Only used for optimization jobs
model_storage_id – Optional unique database ID of the model storage used by the job.
optimization_type – Optional type of the optimization method used in the job. Only used for optimization jobs
optimized_model_id – Optional unique database ID of the optimized model produced by the job. Only used for optimization jobs.
scores – List of scores for the job. Added in Geti v1.1
- task: TaskMetadata | None
- project: ProjectMetadata | None
- dataset: DatasetMetadata | None
- parameters: ParametersMetadata | None
- test: TestMetadata | None
- base_model_id: str | None
- model_storage_id: str | None
- optimization_type: str | None
- optimized_model_id: str | None
- download_url: str | None
- export_format: str | None
- file_id: str | None
- scores: List[ScoreMetadata] | None
- trained_model: ModelMetadata | None
- warnings: List[dict] | None
- supported_project_types: List[dict] | None
- project_id: str | None
- class geti_sdk.data_models.job.JobCancellationInfo(cancellable: bool = True, is_cancelled: bool = False, user_uid: str | None = None, cancel_time: str | datetime | None = None)
Information relating to the cancellation of a Job in Intel Geti
- Variables:
is_cancelled – True if the job is cancelled, False otherwise
user_uid – Unique ID of the User who cancelled the Job
cancel_time – Time at which the Job was cancelled
- cancellable: bool
- is_cancelled: bool
- user_uid: str | None
- cancel_time: str | None
- class geti_sdk.data_models.job.JobCost(requests: List, consumed: List)
Information relating to the cost of a Job in Intel Geti.
- requests: List
- consumed: List
- class geti_sdk.data_models.job.Job(name: str, id: str, type: str | EnumType, metadata: JobMetadata, description: str | None = None, creation_time: str | datetime | None = None, start_time: str | datetime | None = None, end_time: str | datetime | None = None, author: str | None = None, cancellation_info: JobCancellationInfo | None = None, state: str | EnumType | None = None, steps: List[dict] | None = None, cost: JobCost | None = None)
Representation of a job running on the GETi cluster.
- Variables:
name – Name of the job
id – Unique database ID of the job
project_id – Unique database ID of the project from which the job originates
type – Type of the job
creation_time – Time at which the job was created
start_time – Time at which the job started running
end_time – Time at which the job finished running
author – Author of the job
cancellation_info – Information relating to the cancellation of the jobW
metadata – JobMetadata object holding metadata for the job
- name: str
- id: str
- type: str
- metadata: JobMetadata
- description: str | None
- creation_time: str | None
- start_time: str | None
- end_time: str | None
- author: str | None
- cancellation_info: JobCancellationInfo | None
- state: str | None
- steps: List[dict] | None
- property workspace_id: str
Return the unique database ID of the workspace to which the job belongs.
- Returns:
Unique database ID of the workspace to which the job belongs
- property relative_url: str
Return the url at which the Job can be addressed on the GETi cluster, relative to the url of the cluster itself.
- Returns:
Relative url for the Job instance
- update(session: GetiSession) Job
Update the job status to its current value, by making a request to the GETi cluster addressed by session.
- Parameters:
session – GetiSession to the cluster from which the Job originates
- Raises:
ValueError – If no workspace_id has been set for the job prior to calling this method
- Returns:
Job with its status updated
- cancel(session: GetiSession) Job
Cancel and delete the job, by making a request to the GETi cluster addressed by session.
- Parameters:
session – GetiSession to the cluster on which the Job is running
- Returns:
Job with updated status
- property overview: str
Return a string that shows an overview of the job.
- Returns:
String holding an overview of the job
- to_dict() Dict[str, Any]
Return the dictionary representation of the job.
- Returns:
- property is_finished: bool
Return True if the job finished successfully, False otherwise
- property is_running: bool
Return True if the job is currently running, False otherwise
- property total_steps: int
Return the total number of steps in the job
- property current_step: int
Return the current step for the job
- property current_step_message: str
Return the description of the current step for the job
- Returns:
String containing the current step name/description. If for whatever reason the current step cannot be determined, an empty string is returned
- property current_step_progress: float
Return the progress of the current step for the job
- Returns:
float indicating the progress of the current step in the job
- property geti_version: GetiVersion
Return the version of the Intel Geti instance from which the job originates.
- Returns:
Version of the Intel Geti instance from which the job originates
Utility functions
- geti_sdk.data_models.utils.deidentify(instance: Any)
Set all identifier fields of an instance of an attr.define decorated class within the GETi REST DataModels to None.
- Parameters:
instance – Object to deidentify
- geti_sdk.data_models.utils.str_to_enum_converter(enum: Type[EnumType]) Callable[[str | EnumType], EnumType]
Construct a converter function to convert an input value into an instance of the Enum subclass passed in enum.
- Parameters:
enum – type of the Enum to which the converter should convert
- Returns:
Converter function that takes an input value and attempts to convert it into an instance of enum
- geti_sdk.data_models.utils.str_to_optional_enum_converter(enum: Type[EnumType]) Callable[[str | EnumType], EnumType]
Construct a converter function to convert an input value into an instance of the Enum subclass passed in enum.
- Parameters:
enum – type of the Enum to which the converter should convert
- Returns:
Converter function that takes an input value and attempts to convert it into an instance of enum
- geti_sdk.data_models.utils.str_to_enum_converter_by_name_or_value(enum: Type[EnumType], allow_none: bool = False) Callable[[str | EnumType], EnumType]
Construct a converter function to convert an input value into an instance of the Enum subclass passed in enum.
This method attempts to convert both from the Enum value as well as it’s name
- Parameters:
enum – type of the Enum to which the converter should convert
allow_none – True to allow None as input value, i.e. for optional parameters
- Returns:
Converter function that takes an input value and attempts to convert it into an instance of enum
- geti_sdk.data_models.utils.str_to_task_type(task_type: str | TaskType) TaskType
Convert an input string to a task type.
- Parameters:
task_type
- Returns:
TaskType instance corresponding to task_type
- geti_sdk.data_models.utils.str_to_media_type(media_type: str | MediaType) MediaType
Convert an input string to a media type.
- Parameters:
media_type
- Returns:
MediaType instance corresponding to media_type
- geti_sdk.data_models.utils.str_to_shape_type(shape_type: str | ShapeType) ShapeType
Convert an input string to a shape type.
- Parameters:
shape_type
- Returns:
ShapeType instance corresponding to shape_type
- geti_sdk.data_models.utils.str_to_annotation_kind(annotation_kind: str | AnnotationKind) AnnotationKind
Convert an input string to an annotation kind.
- Parameters:
annotation_kind
- Returns:
AnnotationKind instance corresponding to annotation_kind
- geti_sdk.data_models.utils.str_to_datetime(datetime_str: str | datetime | None) datetime | None
Convert a string to a datetime.
- Parameters:
datetime_str – string containing the datetime, in isoformat.
- Returns:
datetime instance
- geti_sdk.data_models.utils.attr_value_serializer(instance, field, value)
Convert a value in an attr.define decorated class to string representation, used while converting the attrs object to a dictionary.
Converts Enums and datetime objects to string representation
- Parameters:
instance
field
value
- Returns:
- geti_sdk.data_models.utils.numpy_from_buffer(buffer: bytes) ndarray
Convert a bytes string representing an image into a numpy array.
- Parameters:
buffer – Bytes object to convert
- Returns:
Numpy.ndarray containing the numpy data from the image
- geti_sdk.data_models.utils.round_dictionary(input_data: Dict[str, Any] | List[Any], decimal_places: int = 3) Dict[str, Any] | List[Any]
Convert all floats in a dictionary to string representation, rounded to decimal_places.
- Parameters:
input_data – Input dictionary to convert and round
decimal_places – Number of decimal places to round to. Defaults to 3
- Returns:
dictionary with all floats rounded
- geti_sdk.data_models.utils.round_to_n_digits(n: int) Callable[[float], float]
Return a function to round an input number to n digits.
- Parameters:
n – Number of digits to round to
- Returns:
Callable that, when called with a number as input, will round the number to n digits.
- geti_sdk.data_models.utils.remove_null_fields(input: Any)
Remove fields that have ‘None’ or an emtpy string ‘’ as their value from a dictionary.
NOTE: This function modifies the input dictionary in place
- Parameters:
input – Dictionary to remove the null fields from
Custom container classes
- class geti_sdk.data_models.containers.AlgorithmList(data: Sequence[Algorithm] | None = None)
A list containing the algorithms supported in Intel® Geti™.
- static from_rest(rest_input: Dict[str, Any]) AlgorithmList
Create an AlgorithmList from the response of the /supported_algorithms REST endpoint in Intel® Geti™.
- Parameters:
rest_input – Dictionary retrieved from the /supported_algorithms REST endpoint
- Returns:
AlgorithmList holding the information related to the supported algorithms in Intel® Geti™
- get_by_model_template(model_template_id: str) Algorithm
Retrieve an algorithm from the list by its model_template_id.
- Parameters:
model_template_id – Name of the model template to get the Algorithm information for
- Returns:
Algorithm holding the algorithm details
- get_by_task_type(task_type: TaskType) AlgorithmList
Return a list of supported algorithms for a particular task type.
- Parameters:
task_type – TaskType to get the supported algorithms for
- Returns:
List of supported algorithms for the task type
- property summary: str
Return a string that gives a very brief summary of the algorithm list.
- Returns:
String holding a brief summary of the list of algorithms
- get_by_name(name: str) Algorithm
Retrieve an algorithm from the list by its algorithm_name.
- Parameters:
name – Name of the Algorithm to get
- Returns:
Algorithm holding the algorithm details
- get_default_for_task_type(task_type: TaskType) Algorithm
Return the default algorithm for a given task type. If there is no algorithm for the task type in the AlgorithmList, this method will raise a ValueError.
- Parameters:
task_type – TaskType of the task to get the default algorithm for
- Raises:
ValueError if there are no available algorithms for the specified task_type in the AlgorithmList
- Returns:
Default algorithm for the task
- class geti_sdk.data_models.containers.MediaList(initlist=None)
A list containing Intel® Geti™ media entities
- property ids: List[str]
Return a list of unique database IDs for all media items in the media list.
- property names: List[str]
Return a list of filenames for all media items in the media list.
- property media_type: Type[MediaTypeVar]
Return the type of the media contained in this list.
- static from_rest_list(rest_input: List[Dict[str, Any]], media_type: Type[MediaTypeVar]) MediaList[MediaTypeVar]
Create a MediaList instance from a list of media entities obtained from the Intel® Geti™ /media endpoints.
- Parameters:
rest_input – List of dictionaries representing media entities in Intel® Geti™
media_type – Image or Video, type of the media entities that are to be converted.
- Returns:
MediaList holding the media entities contained in rest_input, where each entity is of type media_type
- property has_duplicate_filenames: bool
Return True if the media list contains at least two items that have the same filename, False otherwise.
- class geti_sdk.data_models.containers.LabelList(data: Sequence[Label] | None = None)
A list containing labels for an Intel® Geti™ inference model.
- property has_empty_label: bool
Return True if the list of Labels contains an empty label
- classmethod from_json(input_json: List[Dict[str, Any]]) LabelList
Create a LabelList object from json input. Input should be formatted as a list of dictionaries, each representing a single Label
- create_scored_label(id_or_name: str, score: float) ScoredLabel
Return a ScoredLabel object corresponding to the label identified by id_or_name, and with an assigned probability score of score
- Parameters:
id_or_name – ID or name of the Label to assign
score – probability score of the label
- get_empty_label() Label | None
Return the empty label, if the LabelList contains one. If not, return None
- classmethod from_project(project: Project, task_index: int = 0) LabelList
Create a LabelList object for the ‘project’, corresponding to the trainable task addressed by task_index
- Parameters:
project – Project for which to get the list of labels
task_index – Index of the task for which to get the list of labels. Defaults to 0, i.e. the first trainable task in the project
- sort_by_ids(label_ids: List[str])
Sort the labels in the LabelList by their ID, according to the order defined in label_ids
Enumerations
- class geti_sdk.data_models.enums.TaskType(value)
Enum representing the different task types in Intel® Geti™ projects.
- DETECTION = 'detection'
- SEGMENTATION = 'segmentation'
- CLASSIFICATION = 'classification'
- ANOMALY_CLASSIFICATION = 'anomaly_classification'
- ANOMALY_DETECTION = 'anomaly_detection'
- ANOMALY_SEGMENTATION = 'anomaly_segmentation'
- ANOMALY = 'anomaly'
- INSTANCE_SEGMENTATION = 'instance_segmentation'
- ROTATED_DETECTION = 'rotated_detection'
- DATASET = 'dataset'
- CROP = 'crop'
- property is_trainable: bool
Return True if a task of this TaskType is trainable, False otherwise.
- Returns:
- property is_global: bool
Return True if a task of this TaskType produces global labels, False otherwise.
- Returns:
- property is_local: bool
Return True if a task of this TaskType produces local labels, False otherwise.
- Returns:
- property is_anomaly: bool
Return True if a task of this TaskType is an anomaly task, False otherwise.
- Returns:
- property is_segmentation: bool
Return True if a task of this TaskType is a segmentation task, False otherwise.
- Returns:
- property is_detection: bool
Return True if a task of this TaskType is a detection task, False otherwise.
- Returns:
- class geti_sdk.data_models.enums.MediaType(value)
Enum representing the different media types in GETi.
- IMAGE = 'image'
- VIDEO = 'video'
- VIDEO_FRAME = 'video_frame'
- class geti_sdk.data_models.enums.ShapeType(value)
Enum representing the types of shapes available for annotations on the Intel® Geti™ platform.
- RECTANGLE = 'RECTANGLE'
- ELLIPSE = 'ELLIPSE'
- POLYGON = 'POLYGON'
- ROTATED_RECTANGLE = 'ROTATED_RECTANGLE'
- class geti_sdk.data_models.enums.SubscriptionStatus(value)
Enum representing the status of a subscription on the Intel® Geti™ platform.
- ACTIVE = 'ACTIVE'
- CANCELLED = 'CANCELLED'
- class geti_sdk.data_models.enums.AnnotationKind(value)
Enum representing the different kind of annotation scenes on the Intel® Geti™ platform.
- ANNOTATION = 'annotation'
- PREDICTION = 'prediction'
- class geti_sdk.data_models.enums.AnnotationState(value)
Enum representing the different annotation statuses for media items within an Intel® Geti™ project.
- TO_REVISIT = 'to_revisit'
- ANNOTATED = 'annotated'
- PARTIALLY_ANNOTATED = 'partially_annotated'
- NONE = 'none'
- class geti_sdk.data_models.enums.PredictionMode(value)
Enum representing the mode used to generate predictions on the Intel® Geti™ platform.
- LATEST = 'latest'
- AUTO = 'auto'
- ONLINE = 'online'
- class geti_sdk.data_models.enums.ConfigurationEntityType(value)
Enum representing the different configuration types on the Intel® Geti™ platform.
- HYPER_PARAMETER_GROUP = 'HYPER_PARAMETER_GROUP'
- COMPONENT_PARAMETERS = 'COMPONENT_PARAMETERS'
- class geti_sdk.data_models.enums.Domain(value)
Enum representing the different task domains in Intel® Geti™ projects.
- DETECTION = 'DETECTION'
- SEGMENTATION = 'SEGMENTATION'
- CLASSIFICATION = 'CLASSIFICATION'
- ANOMALY_CLASSIFICATION = 'ANOMALY_CLASSIFICATION'
- ANOMALY_DETECTION = 'ANOMALY_DETECTION'
- ANOMALY_SEGMENTATION = 'ANOMALY_SEGMENTATION'
- ANOMALY = 'ANOMALY'
- INSTANCE_SEGMENTATION = 'INSTANCE_SEGMENTATION'
- ROTATED_DETECTION = 'ROTATED_DETECTION'
- class geti_sdk.data_models.enums.ModelStatus(value)
Enum representing the different statuses that a model can have in GETi.
- NOT_READY = 'NOT_READY'
- WEIGHTS_INITIALIZED = 'WEIGHTS_INITIALIZED'
- SUCCESS = 'SUCCESS'
- FAILED = 'FAILED'
- NOT_IMPROVED = 'NOT_IMPROVED'
- class geti_sdk.data_models.enums.OptimizationType(value)
Enum representing the optimization type for an OptimizedModel in Intel® Geti™.
- NNCF = 'NNCF'
- POT = 'POT'
- MO = 'MO'
- ONNX = 'ONNX'
- NONE = 'NONE'
- class geti_sdk.data_models.enums.JobType(value)
Enum representing the type of a job on the Intel® Geti™ cluster.
- UNDEFINED = 'undefined'
- TRAIN = 'train'
- INFERENCE = 'inference'
- RECONSTRUCT_VIDEO = 'reconstruct_video'
- EVALUATE = 'evaluate'
- OPTIMIZATION = 'optimization'
- OPTIMIZE_POT = 'optimize_pot'
- OPTIMIZE_NNCF = 'optimize_nncf'
- TEST = 'test'
- PREPARE_IMPORT_TO_NEW_PROJECT = 'prepare_import_to_new_project'
- PERFORM_IMPORT_TO_NEW_PROJECT = 'perform_import_to_new_project'
- EXPORT_PROJECT = 'export_project'
- IMPORT_PROJECT = 'import_project'
- EXPORT_DATASET = 'export_dataset'
- class geti_sdk.data_models.enums.JobState(value)
Enum representing the state of a job on the Intel® Geti™ server.
- IDLE = 'idle'
- RUNNING = 'running'
- PAUSED = 'paused'
- FINISHED = 'finished'
- ERROR = 'error'
- FAILED = 'failed'
- CANCELLED = 'cancelled'
- INACTIVE = 'inactive'
- SCHEDULED = 'scheduled'