Augmentations per model#

Following table shows details of augmentations that used for each model.

Task

Model

Train

Val

Test

Multi Class Classification
Multi Label Classification
H-Label Classification

Efficientnet-B0
Efficientnet-V2-S
MV3-Large
DeiT
- RandomResizedCrop (size=224)
- RandomFlip (flip_prob=0.5, direction=”horizontal”)
- Normalize

- Resize (size=224)
- Normalize


- Resize (size=224)
- Normalize


Detection


Yolox_l
Yolox_s

- Mosaic (img_scale=640, pad_val=114.0)
- RandomAffine
- MixUp (img_scale=640, ratio_range=(0.8, 1.6), pad_val=114.0)
- MultiScaleFlipAug (img_scale=(640, 640))
- Resize
- RandomFlip (flip_prob=0.5)
- MultiScaleFlipAug (img_scale=(640, 640))
- Resize
- RandomFlip (flip_prob=0.5)





Yolox_x




- YOLOXHSVRandomAug
- RandomFlip (flip_prob=0.5)
- Resize (img_scale=640)
- Pad
- Normalize
- Pad (size_divisor=32)
- Normalize



- Pad (size_divisor=32)
- Normalize










Yolox_tiny






- Mosaic (img_scale=640, pad_val=114.0)
- RandomAffine
- PhotoMetricDistortion
- RandomFlip (flip_prob=0.5)
- Resize (img_scale=640)
- Pad
- Normalize
- Resize (img_scale=(416, 416))
- MultiScaleFlipAug (img_scale=(416, 416))
- RandomFlip
- Pad
- Normalize


- MultiScaleFlipAug (img_scale=(416, 416))
- Resize
- RandomFlip
- Pad
- Normalize






Mobilenetv2_atss
Resnext101_atss


- MinIoURandomCrop
- Resize (img_scale=[(992, 736), (896, 736), (1088, 736), (992, 672), (992, 800)])
- RandomFlip (flip_prob=0.5)
- Normalize
- Resize (img_scale=(992, 736))
- MultiScaleFlipAug (img_scale=(992, 736))
- RandomFlip
- Normalize
- Resize (img_scale=(992, 736))
- MultiScaleFlipAug (img_scale=(992, 736))
- RandomFlip
- Normalize





Mobilenetv2_ssd




- PhotoMetricDistortion
- MinIoURandomCrop
- Resize (img_scale=(864, 864))
- Normalize
- RandomFlip (flip_prob=0.5)
- Resize (img_scale=(864, 864))
- MultiScaleFlipAug (img_scale=(864, 864))
- Normalize


- MultiScaleFlipAug (img_scale=(864, 864))
- Resize
- Normalize









Resnet50_Detr
Resnet50_dino





- RandomFlip (flip_prob=0.5)
- AutoAugment
- Resize
- RandomCrop
- Resize
- Normalize
- Pad (size_divisor=1)
- MultiScaleFlipAug (img_scale=(1333, 800)
- Resize
- RandomFlip
- Normalize
- Pad (size_divisor=32)


- MultiScaleFlipAug (img_scale=(1333, 800)
- Resize
- RandomFlip
- Normalize
- Pad (size_divisor=32)


Instance-segmentation




Convnext_maskrcnn
Efficientnetb2b_maskrcnn
Resnet50_maskrcnn


- Resize (img_scale=1024)
- RandomFlip (flip_prob=0.5)
- Normalize
- Pad (size_divisor=32)

- Resize (img_scale=1024)
- MultiScaleFlipAug
- RandomFlip (flip_prob=0.5)
- Normalize
- Pad (size_divisor=32)
- MultiScaleFlipAug (img_scale=1024)
- Resize
- RandomFlip (flip_prob=0.5)
- Normalize
- Pad (size_divisor=32)





Maskrcnn_swin_t




- Resize (img_scale=1344)
- RandomFlip (flip_prob=0.5)
- Normalize
- Pad (size_divisor=32)
- Pad (size_divisor=32)
- Resize (img_scale=1344)
- MultiScaleFlipAug
- RandomFlip (flip_prob=0.5)
- Normalize
- Pad (size_divisor=32)
- Resize (img_scale=1344)
- MultiScaleFlipAug
- RandomFlip (flip_prob=0.5)
- Normalize

Segmentation






Segnext_b
Segnext_s
Segnext_t
Lite_hrnet_18
Lite_hrnet_18_mod2
Lite_hrnet_s_mod2
Lite_hrnet_x_mod3
- Resize (img_scale=544)
- RandomCrop (crop_size=512, cat_max_ratio=0.75)
- RandomFlip (flip_prob=0.5, direction=”horizontal”)
- Normalize
- Pad (size=512, pad_val=0, seg_pad_val=255)


- Resize (img_scale=544)
- MultiScaleFlipAug
- RandomFlip
- Normalize



- Resize (img_scale=544)
- MultiScaleFlipAug
- RandomFlip
- Normalize