otx.cli.manager#
Configuraion Manager for OTX CLI.
Classes
|
Auto configuration manager that could set the proper configuration. |
- class otx.cli.manager.ConfigManager(args, workspace_root: str | None = None, mode: str = 'train')[source]#
Bases:
object
Auto configuration manager that could set the proper configuration.
Currently, it only supports the small amount of functions. * Data format detection * Task type detection * Write the data to the workspace * Write the data configuration to the workspace
However, it will supports lots of things in the near future. * Automatic train type detection (Supervised, Self, Semi) * Automatic resource allocation (num_workers, HPO)
- auto_split_data(data_roots: str, task: str, ann_file: str | None = None)[source]#
Automatically Split train data –> train/val dataset.
- build_workspace(new_workspace_path: str | None = None) None [source]#
Create OTX workspace with Template configs from task type.
This function provides a user-friendly OTX workspace and provides more intuitive and create customizable templates to help users use all the features of OTX.
- Parameters:
new_workspace_path (Optional[str]) – Workspace dir name for build
- check_workspace() bool [source]#
Check that the class’s workspace_root is an actual workspace folder.
- Returns:
true for workspace else false
- Return type:
- configure_data_config(update_data_yaml: bool = True) None [source]#
Configure data_config according to the situation and create data.yaml.
- configure_template(model: str | None = None) None [source]#
Update the template appropriate for the situation.
- get_dataset_config(subsets: List[str], hyper_parameters: ConfigurableParameters | None = None) dict [source]#
Returns dataset_config in a format suitable for each subset.
- Parameters:
subsets (list, str) – Defaults to [“train”, “val”, “unlabeled”].
hyper_parameters (ConfigurableParameters) – Set of hyper parameters.
- Returns:
dataset_config
- Return type:
- get_hyparams_config(override_param: List | None = None) ConfigurableParameters [source]#
Separates the input params received from args and updates them..
- update_data_config(data_yaml: dict) None [source]#
Convert the data yaml format to the data_config format consumed by the task.
- Parameters:
data_yaml (dict) – data.yaml format
- property data_config_file_path: Path#
The path of the data configuration yaml to use for the task.
- Raises:
FileNotFoundError – If data is received as args from otx train and the file does not exist, Error.
- Returns:
Path of target data configuration file.
- Return type:
Path
- property encryption_key#
Get encryption key from CLI argument or OS environment variables. If it is not specified, return None.