otx.algorithms.anomaly.adapters.anomalib.data#
Initialization of Anomaly Dataset Utils.
Classes
|
Anomaly DataModule. |
- class otx.algorithms.anomaly.adapters.anomalib.data.OTXAnomalyDataModule(config: DictConfig | ListConfig, dataset: DatasetEntity, task_type: TaskType)[source]#
Bases:
LightningDataModule
Anomaly DataModule.
This class converts OTX Dataset into Anomalib dataset and stores train/val/test dataloaders.
- Parameters:
config (Union[DictConfig, ListConfig]) – Anomalib config
dataset (DatasetEntity) – OTX SDK Dataset
Example
>>> from tests.helpers.dataset import OTXAnomalyDatasetGenerator >>> from otx.utils.data import AnomalyDataModule
>>> dataset_generator = OTXAnomalyDatasetGenerator() >>> dataset = dataset_generator.generate() >>> data_module = OTXAnomalyDataModule(config=config, dataset=dataset) >>> i, data = next(enumerate(data_module.train_dataloader())) >>> data["image"].shape torch.Size([32, 3, 256, 256])
- prepare_data_per_node#
If True, each LOCAL_RANK=0 will call prepare data. Otherwise only NODE_RANK=0, LOCAL_RANK=0 will prepare data.
- allow_zero_length_dataloader_with_multiple_devices#
If True, dataloader with zero length within local rank is allowed. Default value is False.
- predict_dataloader() DataLoader | List[DataLoader] [source]#
Predict Dataloader.
- Returns:
Predict Dataloader.
- Return type:
Union[DataLoader, List[DataLoader]]
- setup(stage: str | None = None) None [source]#
Setup Anomaly Data Module.
- Parameters:
stage (Optional[str], optional) – train/val/test stages. Defaults to None.
- summary()[source]#
Print size of the dataset, number of anomalous images and number of normal images.
- test_dataloader() DataLoader | List[DataLoader] [source]#
Test Dataloader.
- Returns:
Test Dataloader.
- Return type:
Union[DataLoader, List[DataLoader]]