otx.api.entities.task_environment#
This module implements the TaskEnvironment entity.
Classes
|
Defines the machine learning environment the task runs in. |
- class otx.api.entities.task_environment.TaskEnvironment(model_template: ModelTemplate, model: ModelEntity | None, hyper_parameters: ConfigurableParameters, label_schema: LabelSchemaEntity)[source]#
Bases:
object
Defines the machine learning environment the task runs in.
Args: model_template (ModelTemplate): The model template used for this task model (Optional[ModelEntity]): Model to use; if not specified, the task must be either weight-less
or use pre-trained or randomly initialised weights.
hyper_parameters (ConfigurableParameters): Set of hyper parameters label_schema (LabelSchemaEntity): Label schema associated to this task
- get_hyper_parameters(instance_of: Type[TypeVariable] | None = None) TypeVariable [source]#
Returns Configuration for the task, de-serialized as type specified in instance_of.
If the type of the configurable parameters is unknown, a generic ConfigurableParameters object with all available parameters can be obtained by calling method with instance_of = None.
Example
>>> self.get_hyper_parameters(instance_of=TorchSegmentationConfig) TorchSegmentationConfig()
- Parameters:
instance_of (Optional[Type[TypeVariable]]) – subtype of ModelConfig of the hyperparamters. Defaults to None.
- Returns:
ConfigurableParameters entity
- Return type:
TypeVariable
- get_labels(include_empty: bool = False) List[LabelEntity] [source]#
Return the labels in this task environment (based on the label schema).
- Parameters:
include_empty (bool) – Include the empty label if
True
. Defaults to False.- Returns:
List of labels
- Return type:
List[LabelEntity]
- get_model_configuration() ModelConfiguration [source]#
Get the configuration needed to use the current model.
- That is the current set of:
configurable parameters
labels
label schema
- Returns:
Model configuration
- Return type:
- set_hyper_parameters(hyper_parameters: ConfigurableParameters)[source]#
Sets the hyper parameters for the task.
Example
>>> self.set_hyper_parameters(hyper_parameters=TorchSegmentationParameters()) None
- Parameters:
hyper_parameters (ConfigurationParameter) – ConfigurableParameters entity to assign to task