otx.api.utils.dataset_utils#
Dataset utils.
Functions
|
Add saliency maps (2D array for class-agnostic saliency map, 3D array or list or 2D arrays for class-wise saliency maps) to a single dataset item. |
|
Check if a dataset contains any items with the anomalous label. |
|
Find the indices of the fully annotated items in a dataset. |
|
Extract a subset that contains only the global annotations. |
|
Extract a subset that contains only those dataset items that have local annotations. |
|
Use non-linear normalization y=x**1.5 for 2D saliency maps. |
|
Split a dataset into the globally and locally annotated subsets. |
|
Split a resultset into the globally and locally annotated resultsets. |
- otx.api.utils.dataset_utils.add_saliency_maps_to_dataset_item(dataset_item: DatasetItemEntity, saliency_map: List[ndarray | None] | ndarray, model: ModelEntity | None, labels: List[LabelEntity], predicted_scored_labels: List[ScoredLabel] | None = None, explain_predicted_classes: bool = True, process_saliency_maps: bool = False)[source]#
Add saliency maps (2D array for class-agnostic saliency map, 3D array or list or 2D arrays for class-wise saliency maps) to a single dataset item.
- otx.api.utils.dataset_utils.contains_anomalous_images(dataset: DatasetEntity) bool [source]#
Check if a dataset contains any items with the anomalous label.
- Parameters:
dataset (DatasetEntity) – Dataset to check for anomalous items.
- Returns:
True if the dataset contains anomalous items, False otherwise.
- Return type:
- otx.api.utils.dataset_utils.get_fully_annotated_idx(dataset: DatasetEntity) List[int] [source]#
Find the indices of the fully annotated items in a dataset.
A dataset item is fully annotated if local annotations are available, or if the item has the normal label.
- Parameters:
dataset (DatasetEntity) – Dataset that may contain both partially and fully annotated items.
- Returns:
List of indices of the fully annotated dataset items.
- Return type:
List[int]
- otx.api.utils.dataset_utils.get_global_subset(dataset: DatasetEntity) DatasetEntity [source]#
Extract a subset that contains only the global annotations.
- Parameters:
dataset (DatasetEntity) – Dataset from which we want to extract the globally annotated subset.
- Returns:
Output dataset with only global annotations
- Return type:
- otx.api.utils.dataset_utils.get_local_subset(dataset: DatasetEntity, fully_annotated_idx: List[int] | None = None, include_normal: bool = True) DatasetEntity [source]#
Extract a subset that contains only those dataset items that have local annotations.
- Parameters:
dataset (DatasetEntity) – Dataset from which we want to extract the locally annotated subset.
fully_annotated_idx (Optional[List[int]]) – The indices of the fully annotated dataset items. If not provided, the function will compute the indices before creating the subset.
include_normal (bool) – When true, global normal annotations will be included in the local dataset.
- Returns:
Output dataset with only local annotations
- Return type:
- otx.api.utils.dataset_utils.non_linear_normalization(saliency_map: ndarray) ndarray [source]#
Use non-linear normalization y=x**1.5 for 2D saliency maps.
- otx.api.utils.dataset_utils.split_local_global_dataset(dataset: DatasetEntity) Tuple[DatasetEntity, DatasetEntity] [source]#
Split a dataset into the globally and locally annotated subsets.
- Parameters:
dataset (DatasetEntity) – Input dataset
- Returns:
Tuple of the globally and locally annotated subsets.
- Return type:
Tuple[DatasetEntity, DatasetEntity]
- otx.api.utils.dataset_utils.split_local_global_resultset(resultset: ResultSetEntity) Tuple[ResultSetEntity, ResultSetEntity] [source]#
Split a resultset into the globally and locally annotated resultsets.
- Parameters:
resultset (ResultSetEntity) – Input resultset
- Returns:
Tuple of the globally and locally annotated resultsets.
- Return type:
Tuple[ResultSetEntity, ResultSetEntity]