otx.core.model.detection#
Class definition for detection model entity used in OTX.
Classes
|
OTX detection model which can attach a XAI (Explainable AI) branch. |
|
Base class for the detection models used in OTX. |
|
Object detection model compatible for OpenVINO IR inference. |
- class otx.core.model.detection.ExplainableOTXDetModel(label_info: LabelInfoTypes, input_size: tuple[int, int], optimizer: OptimizerCallable = <function _default_optimizer_callable>, scheduler: LRSchedulerCallable | LRSchedulerListCallable = <function _default_scheduler_callable>, metric: MetricCallable = <function _mean_ap_f_measure_callable>, torch_compile: bool = False, tile_config: TileConfig = TileConfig(enable_tiler=False, enable_adaptive_tiling=True, tile_size=(400, 400), overlap=0.2, iou_threshold=0.45, max_num_instances=1500, object_tile_ratio=0.03, sampling_ratio=1.0, with_full_img=False))[source]#
Bases:
OTXDetectionModel
OTX detection model which can attach a XAI (Explainable AI) branch.
- class otx.core.model.detection.OTXDetectionModel(label_info: LabelInfoTypes, input_size: tuple[int, int] | None = None, optimizer: OptimizerCallable = <function _default_optimizer_callable>, scheduler: LRSchedulerCallable | LRSchedulerListCallable = <function _default_scheduler_callable>, metric: MetricCallable = <function _null_metric_callable>, torch_compile: bool = False, tile_config: TileConfig = TileConfig(enable_tiler=False, enable_adaptive_tiling=True, tile_size=(400, 400), overlap=0.2, iou_threshold=0.45, max_num_instances=1500, object_tile_ratio=0.03, sampling_ratio=1.0, with_full_img=False), train_type: Literal[OTXTrainType.SUPERVISED, OTXTrainType.SEMI_SUPERVISED] = OTXTrainType.SUPERVISED)[source]#
Bases:
OTXModel
[DetBatchDataEntity
,DetBatchPredEntity
]Base class for the detection models used in OTX.
- forward_tiles(inputs: OTXTileBatchDataEntity[DetBatchDataEntity]) DetBatchPredEntity [source]#
Unpack detection tiles.
- Parameters:
inputs (TileBatchDetDataEntity) – Tile batch data entity.
- Returns:
Merged detection prediction.
- Return type:
DetBatchPredEntity
- get_classification_layers(prefix: str = 'model.') dict[str, dict[str, int]] [source]#
Get final classification layer information for incremental learning case.
- get_dummy_input(batch_size: int = 1) DetBatchDataEntity [source]#
Returns a dummy input for detection model.
- on_load_checkpoint(ckpt: dict[str, Any]) None [source]#
Load state_dict from checkpoint.
For detection, it is need to update confidence threshold information when the metric is FMeasure.
- predict_step(batch: DetBatchDataEntity, batch_idx: int, dataloader_idx: int = 0) DetBatchPredEntity [source]#
Step function called during PyTorch Lightning Trainer’s predict.
- class otx.core.model.detection.OVDetectionModel(model_name: str, model_type: str = 'SSD', async_inference: bool = True, max_num_requests: int | None = None, use_throughput_mode: bool = True, model_api_configuration: dict[str, ~typing.Any] | None = None, metric: ~typing.Callable[[~otx.core.types.label.LabelInfo], ~torchmetrics.metric.Metric | ~torchmetrics.collections.MetricCollection] = <function _mean_ap_f_measure_callable>, **kwargs)[source]#
Bases:
OVModel
[DetBatchDataEntity
,DetBatchPredEntity
]Object detection model compatible for OpenVINO IR inference.
It can consume OpenVINO IR model path or model name from Intel OMZ repository and create the OTX detection model compatible for OTX testing pipeline.