otx.core.model.instance_segmentation#
Class definition for instance segmentation model entity used in OTX.
Classes
|
OTX Instance Segmentation model which can attach a XAI (Explainable AI) branch. |
|
Base class for the Instance Segmentation models used in OTX. |
|
Instance segmentation model compatible for OpenVINO IR inference. |
- class otx.core.model.instance_segmentation.ExplainableOTXInstanceSegModel(label_info: LabelInfoTypes, input_size: tuple[int, int], optimizer: OptimizerCallable = <function _default_optimizer_callable>, scheduler: LRSchedulerCallable | LRSchedulerListCallable = <function _default_scheduler_callable>, metric: MetricCallable = <function _rle_mean_ap_f_measure_callable>, torch_compile: bool = False, tile_config: TileConfig = TileConfig(enable_tiler=False, enable_adaptive_tiling=True, tile_size=(400, 400), overlap=0.2, iou_threshold=0.45, max_num_instances=1500, object_tile_ratio=0.03, sampling_ratio=1.0, with_full_img=False))[source]#
Bases:
OTXInstanceSegModel
OTX Instance Segmentation model which can attach a XAI (Explainable AI) branch.
- export_model_forward_context() Iterator[None] [source]#
A context manager for managing the model’s forward function during model exportation.
It temporarily modifies the model’s forward function to generate output sinks for explain results during the model graph tracing.
- forward_explain(inputs: InstanceSegBatchDataEntity) InstanceSegBatchPredEntity [source]#
Model forward function.
- class otx.core.model.instance_segmentation.OTXInstanceSegModel(label_info: LabelInfoTypes, input_size: tuple[int, int], optimizer: OptimizerCallable = <function _default_optimizer_callable>, scheduler: LRSchedulerCallable | LRSchedulerListCallable = <function _default_scheduler_callable>, metric: MetricCallable = <function _rle_mean_ap_f_measure_callable>, torch_compile: bool = False, tile_config: TileConfig = TileConfig(enable_tiler=False, enable_adaptive_tiling=True, tile_size=(400, 400), overlap=0.2, iou_threshold=0.45, max_num_instances=1500, object_tile_ratio=0.03, sampling_ratio=1.0, with_full_img=False))[source]#
Bases:
OTXModel
[InstanceSegBatchDataEntity
,InstanceSegBatchPredEntity
]Base class for the Instance Segmentation models used in OTX.
- forward_tiles(inputs: OTXTileBatchDataEntity[InstanceSegBatchDataEntity]) InstanceSegBatchPredEntity [source]#
Unpack instance segmentation tiles.
- Parameters:
inputs (TileBatchInstSegDataEntity) – Tile batch data entity.
- Returns:
Merged instance segmentation prediction.
- Return type:
InstanceSegBatchPredEntity
- get_classification_layers(prefix: str = '') dict[str, dict[str, int]] [source]#
Return classification layer names by comparing two different number of classes models.
- Parameters:
config (DictConfig) – Config for building model.
model_registry (Registry) – Registry for building model.
prefix (str) – Prefix of model param name. Normally it is “model.” since OTXModel set it’s nn.Module model as self.model
- Returns:
dict[str, dict[str, int]] A dictionary contain classification layer’s name and information. Stride means dimension of each classes, normally stride is 1, but sometimes it can be 4 if the layer is related bbox regression for object detection. Extra classes is default class except class from data. Normally it is related with background classes.
- class otx.core.model.instance_segmentation.OVInstanceSegmentationModel(model_name: str, model_type: str = 'MaskRCNN', async_inference: bool = True, max_num_requests: int | None = None, use_throughput_mode: bool = True, model_api_configuration: dict[str, Any] | None = None, metric: MetricCallable = <function _rle_mean_ap_f_measure_callable>, **kwargs)[source]#
Bases:
OVModel
[InstanceSegBatchDataEntity
,InstanceSegBatchPredEntity
]Instance segmentation model compatible for OpenVINO IR inference.
It can consume OpenVINO IR model path or model name from Intel OMZ repository and create the OTX detection model compatible for OTX testing pipeline.