Openvino Adapter#
- class model_api.adapters.openvino_adapter.OpenvinoAdapter(core, model, weights_path=None, model_parameters={}, device='CPU', plugin_config=None, max_num_requests=0, precision='FP16', download_dir=None, cache_dir=None)#
Bases:
InferenceAdapter
Works with OpenVINO model
precision, download_dir and cache_dir are ignored if model is a path to a file
- await_all()#
In case of asynchronous execution waits the completion of all busy infer requests.
- Return type:
None
- await_any()#
In case of asynchronous execution waits the completion of any busy infer request until it becomes available for the data submission.
- Return type:
None
- copy_raw_result(request)#
- embed_preprocessing(layout, resize_mode, interpolation_mode, target_shape, pad_value, dtype=<class 'int'>, brg2rgb=False, mean=None, scale=None, input_idx=0)#
Embeds preprocessing into the model using OpenVINO preprocessing API
- Return type:
None
- get_input_layers()#
- Gets the names of model inputs and for each one creates the Metadata structure,
which contains the information about the input shape, layout, precision in OpenVINO format, meta (optional)
- Return type:
dict
[str
,Metadata
]- Returns:
the dict containing Metadata for all inputs
- get_layout_for_input(input, shape=None)#
- Return type:
str
- get_model()#
Returns the openvino.Model object
- Returns:
openvino.Model object
- get_output_layers()#
- Gets the names of model outputs and for each one creates the Metadata structure,
which contains the information about the output shape, layout, precision in OpenVINO format, meta (optional)
- Return type:
dict
[str
,Metadata
]- Returns:
the dict containing Metadata for all outputs
- get_raw_result(request)#
Gets raw results from the internal inference framework representation as a dict.
- Parameters:
infer_result (-) – framework-specific result of inference from the model
- Returns:
- {
‘output_layer_name_1’: raw_result_1, ‘output_layer_name_2’: raw_result_2, …
}
- Return type:
raw result (dict) - model raw output in the following format
- get_rt_info(path)#
Forwards to openvino.Model.get_rt_info(path)
- Return type:
OVAny
- infer_async(dict_data, callback_data)#
Performs the asynchronous model inference and sets the callback for inference completion. Also, it should define get_raw_result() function, which handles the result of inference from the model.
- Parameters:
dict_data (-) –
it’s submitted to the model for inference and has the following format: {
’input_layer_name_1’: data_1, ‘input_layer_name_2’: data_2, …
}
callback_data (-) – the data for callback, that will be taken after the model inference is ended
- Return type:
None
- infer_sync(dict_data)#
Performs the synchronous model inference. The infer is a blocking method.
- Parameters:
dict_data (-) –
it’s submitted to the model for inference and has the following format: {
’input_layer_name_1’: data_1, ‘input_layer_name_2’: data_2, …
}
- Returns:
- {
‘output_layer_name_1’: raw_result_1, ‘output_layer_name_2’: raw_result_2, …
}
- Return type:
raw result (dict) - model raw output in the following format
- is_ready()#
In case of asynchronous execution checks if one can submit input data to the model for inference, or all infer requests are busy.
- Return type:
bool
- Returns:
- the boolean flag whether the input data can be
submitted to the model for inference or not
- load_model()#
Loads the model on the device.
- Return type:
None
- log_runtime_settings()#
- Return type:
None
- operations_by_type(operation_type)#
- reshape_model(new_shape)#
Reshapes the model inputs to fit the new input shape.
- Parameters:
new_shape (-) –
the dictionary with inputs names as keys and list of new shape as values in the following format: {
’input_layer_name_1’: [1, 128, 128, 3], ‘input_layer_name_2’: [1, 128, 128, 3], …
}
- save_model(path, weights_path='', version='UNSPECIFIED')#
Serializes model to the filesystem.
- set_callback(callback_fn)#
- update_model_info(model_info)#
Populates OV IR RT info with the given model info.
- Parameters:
model_info (dict[str, Any]) – a dict representing the serialized parameters.
- model_api.adapters.openvino_adapter.create_core()#
- Return type:
Core
- model_api.adapters.openvino_adapter.get_input_shape(input_tensor)#
- Return type:
list
[int
]
- model_api.adapters.openvino_adapter.get_user_config(flags_d, flags_nstreams, flags_nthreads=None)#
- Return type:
dict
[str
,str
]
- model_api.adapters.openvino_adapter.parse_devices(device_string)#
- Return type:
list
[str
]
- model_api.adapters.openvino_adapter.parse_value_per_device(devices, values_string)#
Format: <device1>:<value1>,<device2>:<value2> or just <value>
- Return type:
dict
[str
,int
]