Utils#

class model_api.models.utils.OutputTransform(input_size, output_resolution)#

Bases: object

compute_resolution(input_size)#
resize(image)#
scale(inputs)#
model_api.models.utils.add_rotated_rects(inst_seg_result)#
Return type:

RotatedSegmentationResult

model_api.models.utils.clip_detections(detections, size)#

Clip bounding boxes to image size.

Parameters:
  • detections (DetectionResult) – detection results including boxes, labels and scores.

  • size (tuple[int, int]) – image size of format (height, width).

model_api.models.utils.get_contours(seg_result)#
Return type:

list[Contour]

model_api.models.utils.load_labels(label_file)#
model_api.models.utils.multiclass_nms(detections, iou_threshold=0.45, max_num=200)#

Multi-class NMS.

strategy: in order to perform NMS independently per class, we add an offset to all the boxes. The offset is dependent only on the class idx, and is large enough so that boxes from different classes do not overlap

Parameters:
  • detections (np.ndarray) – labels, scores and boxes

  • iou_threshold (float, optional) – IoU threshold. Defaults to 0.45.

  • max_num (int, optional) – Max number of objects filter. Defaults to 200.

Returns:

(dets, indices), Dets are boxes with scores. Indices are indices of kept boxes.

Return type:

tuple

model_api.models.utils.nms(x1, y1, x2, y2, scores, thresh, include_boundaries=False, keep_top_k=0)#
Return type:

list[int]

model_api.models.utils.softmax(logits, eps=1e-09, axis=None, keepdims=False)#
Return type:

ndarray