Utils#

class model_api.adapters.utils.InputTransform(reverse_input_channels=False, mean_values=None, scale_values=None)#

Bases: object

__call__(inputs)#

Call self as a function.

class model_api.adapters.utils.Layout(layout='')#

Bases: object

static from_openvino(input)#

Create Layout from openvino input

static from_shape(shape)#

Create Layout from given shape

Return type:

str

static from_user_layouts(input_names, user_layouts)#

Create Layout for input based on user info

static parse_layouts(layout_string)#

Parse layout parameter in format “input0:NCHW,input1:NC” or “NCHW” (applied to all inputs)

Return type:

dict | None

model_api.adapters.utils.crop_resize(size, interpolation, pad_value)#
Return type:

Callable

model_api.adapters.utils.crop_resize_graph(input, size)#
Return type:

Node

model_api.adapters.utils.crop_resize_ocv(image, size)#
Return type:

ndarray

model_api.adapters.utils.get_rt_info_from_dict(rt_info_dict, path)#
Return type:

OVAny

model_api.adapters.utils.load_parameters_from_onnx(onnx_model)#
Return type:

dict[str, Any]

model_api.adapters.utils.resize_image(size, interpolation, pad_value)#
Return type:

Callable

model_api.adapters.utils.resize_image_graph(input, size, keep_aspect_ratio, interpolation, pad_value)#
Return type:

Node

model_api.adapters.utils.resize_image_letterbox(size, interpolation, pad_value)#
Return type:

Callable

model_api.adapters.utils.resize_image_letterbox_graph(input, size, interpolation, pad_value)#
Return type:

Node

model_api.adapters.utils.resize_image_letterbox_ocv(image, size, interpolation=1, pad_value=0)#
Return type:

ndarray

model_api.adapters.utils.resize_image_ocv(image, size, keep_aspect_ratio=False, is_pad=False, pad_value=0, interpolation=1)#
Return type:

ndarray

model_api.adapters.utils.resize_image_with_aspect(size, interpolation, pad_value)#
Return type:

Callable

model_api.adapters.utils.resize_image_with_aspect_ocv(image, size, interpolation=1)#
Return type:

ndarray