Ssd#
- class model_api.models.ssd.BoxesLabelsParser(layers, input_size, labels_layer='labels', default_label=0)#
Bases:
object
- __call__(outputs)#
Parse model outputs.
Note: Bounding boxes layer from outputs are expected to be in format [xmin, ymin, xmax, ymax, score].
- Parameters:
outputs (dict) – Model outputs wrapped in dict.
- Returns:
Parsed model outputs.
- Return type:
DetectionResult
- static find_layer_bboxes_output(layers)#
- class model_api.models.ssd.MultipleOutputParser(layers, bboxes_layer='bboxes', scores_layer='scores', labels_layer='labels')#
Bases:
object
- __call__(outputs)#
Parse model outputs.
- Parameters:
outputs (dict) – Model outputs wrapped in dict.
- Returns:
Parsed model outputs.
- Return type:
DetectionResult
- class model_api.models.ssd.SSD(inference_adapter, configuration={}, preload=False)#
Bases:
DetectionModel
Detection Model constructor
It extends the ImageModel construtor.
- Parameters:
inference_adapter (InferenceAdapter) – allows working with the specified executor
configuration (dict, optional) – it contains values for parameters accepted by specific wrapper (confidence_threshold, labels etc.) which are set as data attributes
preload (bool, optional) – a flag whether the model is loaded to device while initialization. If preload=False, the model must be loaded via load method before inference
- Raises:
WrapperError – if the model has more than 1 image inputs
- postprocess(outputs, meta)#
Interface for postprocess method.
- Parameters:
outputs (dict) –
model raw output in the following format: {
’output_layer_name_1’: raw_result_1, ‘output_layer_name_2’: raw_result_2, …
}
meta (dict) – the input metadata obtained from preprocess method
- Return type:
DetectionResult
- Returns:
postprocessed data in the format defined by wrapper
- preprocess(inputs)#
Data preprocess method
- It performs basic preprocessing of a single image:
Resizes the image to fit the model input size via the defined resize type
Normalizes the image: subtracts means, divides by scales, switch channels BGR-RGB
Changes the image layout according to the model input layout
Also, it keeps the size of original image and resized one as original_shape and resized_shape in the metadata dictionary.
Note
It supports only models with single image input. If the model has more image inputs or has additional supported inputs, the preprocess should be overloaded in a specific wrapper.
- Parameters:
inputs (ndarray) – a single image as 3D array in HWC layout
- Returns:
- {
‘input_layer_name’: preprocessed_image
}
the input metadata, which might be used in postprocess method
- Return type:
the preprocessed image in the following format
- class model_api.models.ssd.SingleOutputParser(all_outputs)#
Bases:
object
- __call__(outputs)#
Parse model outputs.
- Parameters:
outputs (dict) – Model outputs wrapped in dict.
- Returns:
Parsed model outputs.
- Return type:
DetectionResult
- model_api.models.ssd.find_layer_by_name(name, layers)#