otx.algorithms.visual_prompting.tasks.inference#
Visual Prompting Task.
Classes
|
Base Visual Prompting Task. |
|
Learn task for Zero-shot learning. |
- class otx.algorithms.visual_prompting.tasks.inference.InferenceTask(task_environment: TaskEnvironment, output_path: str | None = None)[source]#
Bases:
IInferenceTask
,IEvaluationTask
,IExportTask
,IUnload
Base Visual Prompting Task.
Train, Infer, and Export an Visual Prompting Task.
- Parameters:
task_environment (TaskEnvironment) – OTX Task environment.
output_path (Optional[str]) – output path where task output are saved.
- evaluate(output_resultset: ResultSetEntity, evaluation_metric: str | None = None) None [source]#
Evaluate the performance on a result set.
- Parameters:
output_resultset (ResultSetEntity) – Result Set from which the performance is evaluated.
evaluation_metric (Optional[str], optional) – Evaluation metric. Defaults to None. Instead, metric is chosen depending on the task type.
- export(export_type: ExportType, output_model: ModelEntity, precision: ModelPrecision = ModelPrecision.FP32, dump_features: bool = False) None [source]#
Export model to OpenVINO IR.
When SAM gets an image for inference, image encoder runs just once to get image embedding. After that, prompt encoder + mask decoder runs repeatedly to get mask prediction. For this case, SAM should be divided into two parts, image encoder and prompt encoder + mask decoder.
- Parameters:
export_type (ExportType) – Export type should be ExportType.OPENVINO
output_model (ModelEntity) – The model entity in which to write the OpenVINO IR data
precision (bool) – Output model weights and inference precision
dump_features (bool) – Flag to return “feature_vector” and “saliency_map”.
- Raises:
Exception – If export_type is not ExportType.OPENVINO
- get_config() DictConfig | ListConfig [source]#
Get Visual Prompting Config from task environment.
- Returns:
Visual Prompting config.
- Return type:
Union[DictConfig, ListConfig]
- infer(dataset: DatasetEntity, inference_parameters: InferenceParameters) DatasetEntity [source]#
Perform inference on a dataset.
- Parameters:
dataset (DatasetEntity) – Dataset to infer.
inference_parameters (InferenceParameters) – Inference parameters.
- Returns:
Output dataset with predictions.
- Return type:
- load_model(otx_model: ModelEntity | None = None) LightningModule [source]#
Create and Load Visual Prompting Module.
Currently, load model through sam_model_registry because there is only SAM. If other visual prompting model is added, loading model process must be changed.
- Parameters:
otx_model (Optional[ModelEntity]) – OTX Model from the task environment.
- Returns:
Visual prompting model with/without weights.
- Return type:
LightningModule
- model_info() Dict [source]#
Return model info to save the model weights.
- Returns:
Model info.
- Return type:
Dict
- save_model(output_model: ModelEntity) None [source]#
Save the model after training is completed.
- Parameters:
output_model (ModelEntity) – Output model onto which the weights are saved.
- class otx.algorithms.visual_prompting.tasks.inference.ZeroShotTask(task_environment: TaskEnvironment, output_path: str | None = None)[source]#
Bases:
InferenceTask
Learn task for Zero-shot learning.
**There are two ways to be decided: 1. use it independently <– temporarily current setting 2. use it depending on template
The objective of this task is to get reference features and export it with decoder modules.
- infer(dataset: DatasetEntity, inference_parameters: InferenceParameters) DatasetEntity [source]#
Perform inference on a dataset.
- Parameters:
dataset (DatasetEntity) – Dataset to infer.
inference_parameters (InferenceParameters) – Inference parameters.
- Returns:
Output dataset with predictions.
- Return type:
- save_model(output_model: ModelEntity) None [source]#
Save the model after training is completed.
- Parameters:
output_model (ModelEntity) – Output model onto which the weights are saved.