Class-Incremental Sampler#
This sampler is a sampler that creates an effective batch. For default setting, the square root of (number of old data/number of new data) is used as the ratio of old data.
from otx.algo.samplers.class_incremental_sampler import ClassIncrementalSampler
dataset = OTXDataset(...)
class_incr_sampler = ClassIncrementalSampler(
dataset=dataset,
batch_size=32,
old_classes=["car", "truck"],
new_classes=["bus"],
)
(otx) ...$ otx train ... \
--data.train_subset.sampler.class_path otx.algo.samplers.class_incremental_sampler.ClassIncrementalSampler \
--data.train_subset.sampler.init_args.old_classes '[car,truck]' \
--data.train_subset.sampler.init_args.new_classes '[bus]'
Balanced Sampler#
This sampler is a sampler that creates an effective batch. It helps ensure balanced sampling by class based on the distribution of class labels during supervised learning.
from otx.algo.samplers.balanced_sampler import BalancedSampler
dataset = OTXDataset(...)
class_incr_sampler = BalancedSampler(
dataset=dataset,
)
(otx) ...$ otx train ... \
--data.train_subset.sampler.class_path otx.algo.samplers.balanced_sampler.BalancedSampler