otx.core.model.segmentation#
Class definition for detection model entity used in OTX.
Classes
|
Semantic Segmentation model used in OTX. |
|
Semantic segmentation model compatible for OpenVINO IR inference. |
- class otx.core.model.segmentation.OTXSegmentationModel(label_info: LabelInfoTypes, data_input_params: DataInputParams, model_name: str = 'otx_segmentation_model', optimizer: OptimizerCallable = <function _default_optimizer_callable>, scheduler: LRSchedulerCallable | LRSchedulerListCallable = <function _default_scheduler_callable>, metric: MetricCallable = <function _segm_callable>, torch_compile: bool = False, tile_config: TileConfig = TileConfig(enable_tiler=False, enable_adaptive_tiling=True, tile_size=(400, 400), overlap=0.2, iou_threshold=0.45, max_num_instances=1500, object_tile_ratio=0.03, sampling_ratio=1.0, with_full_img=False))[source]#
Bases:
OTXModel
Semantic Segmentation model used in OTX.
- Parameters:
label_info (LabelInfoTypes) – Information about the hierarchical labels.
data_input_params (DataInputParams) – Parameters for data input.
model_name (str, optional) – Name of the model. Defaults to “otx_segmentation_model”.
optimizer (OptimizerCallable, optional) – Callable for the optimizer. Defaults to DefaultOptimizerCallable.
scheduler (LRSchedulerCallable | LRSchedulerListCallable, optional) – Callable for the learning rate scheduler.
DefaultSchedulerCallable. (Defaults to) –
metric (MetricCallable, optional) – Callable for the metric. Defaults to SegmCallable.
torch_compile (bool, optional) – Flag to indicate whether to use torch.compile. Defaults to False.
tile_config (TileConfig, optional) – Configuration for tiling. Defaults to TileConfig(enable_tiler=False).
Initialize the base model with the given parameters.
- Parameters:
label_info (LabelInfoTypes) – Information about the labels used in the model.
data_input_params (DataInputParams) – Parameters of the input data such as input size, mean, and std.
model_name (str, optional) – Name of the model. Defaults to “OTXModel”.
optimizer (OptimizerCallable, optional) – Callable for the optimizer. Defaults to DefaultOptimizerCallable.
scheduler (LRSchedulerCallable | LRSchedulerListCallable) – Callable for the learning rate scheduler. Defaults to DefaultSchedulerCallable.
metric (MetricCallable, optional) – Callable for the metric. Defaults to NullMetricCallable.
torch_compile (bool, optional) – Flag to indicate if torch.compile should be used. Defaults to False.
tile_config (TileConfig, optional) – Configuration for tiling. Defaults to TileConfig(enable_tiler=False).
- Returns:
None
- forward_explain(inputs: TorchDataBatch) TorchPredBatch [source]#
Model forward explain function.
- forward_for_tracing(image: Tensor) Tensor | dict[str, Tensor] [source]#
Model forward function used for the model tracing during model exportation.
- forward_tiles(inputs: OTXTileBatchDataEntity) TorchPredBatch [source]#
Unpack segmentation tiles.
- Parameters:
inputs (TileBatchSegDataEntity) – Tile batch data entity.
- Returns:
Merged semantic segmentation prediction.
- Return type:
- get_dummy_input(batch_size: int = 1) TorchDataBatch [source]#
Returns a dummy input for semantic segmentation model.
- class otx.core.model.segmentation.OVSegmentationModel(model_name: str, model_type: str = 'Segmentation', async_inference: bool = True, max_num_requests: int | None = None, use_throughput_mode: bool = True, model_api_configuration: dict[str, Any] | None = None, metric: MetricCallable = <function _segm_callable>, **kwargs)[source]#
Bases:
OVModel
Semantic segmentation model compatible for OpenVINO IR inference.
It can consume OpenVINO IR model path or model name from Intel OMZ repository and create the OTX segmentation model compatible for OTX testing pipeline.
Initialize the base model with the given parameters.
- Parameters:
label_info (LabelInfoTypes) – Information about the labels used in the model.
data_input_params (DataInputParams) – Parameters of the input data such as input size, mean, and std.
model_name (str, optional) – Name of the model. Defaults to “OTXModel”.
optimizer (OptimizerCallable, optional) – Callable for the optimizer. Defaults to DefaultOptimizerCallable.
scheduler (LRSchedulerCallable | LRSchedulerListCallable) – Callable for the learning rate scheduler. Defaults to DefaultSchedulerCallable.
metric (MetricCallable, optional) – Callable for the metric. Defaults to NullMetricCallable.
torch_compile (bool, optional) – Flag to indicate if torch.compile should be used. Defaults to False.
tile_config (TileConfig, optional) – Configuration for tiling. Defaults to TileConfig(enable_tiler=False).
- Returns:
None