otx.algo.classification.losses#
Backbone modules for OTX custom model.
Classes
|
Asymmetric angular loss. |
- class otx.algo.classification.losses.AsymmetricAngularLossWithIgnore(gamma_pos: float = 0.0, gamma_neg: float = 1.0, k: float = 0.8, clip: float = 0.05, reduction: str = 'sum', loss_weight: float = 1.0)[source]#
Bases:
Module
Asymmetric angular loss.
- Parameters:
gamma_pos (float) – positive focusing parameter. Defaults to 0.0.
gamma_neg (float) – Negative focusing parameter. We usually set gamma_neg > gamma_pos. Defaults to 1.0.
k (float) – positive balance parameter. Defaults to 0.8.
clip (float) – Probability margin. Defaults to 0.05.
reduction (str) – The method used to reduce the loss into a scalar.
loss_weight (float) – Weight of loss. Defaults to 1.0.
Init fuction of AsymmetricAngularLossWithIgnore class.