otx.core.exporter.anomaly#
Class definition for anomaly models exporter used in OTX.
Classes
|
Exporter for anomaly tasks. |
- class otx.core.exporter.anomaly.OTXAnomalyModelExporter(image_shape: tuple[int, int] = (256, 256), image_threshold: float = 0.5, pixel_threshold: float = 0.5, task: TaskType = TaskType.CLASSIFICATION, mean_values: tuple[float, float, float] = (0.0, 0.0, 0.0), scale_values: tuple[float, float, float] = (1.0, 1.0, 1.0), normalization_scale: float = 1.0, via_onnx: bool = False, onnx_export_configuration: dict[str, Any] | None = None)[source]#
Bases:
OTXNativeModelExporter
Exporter for anomaly tasks.
Initializes OTXAnomalyModelExporter object.
- Parameters:
image_shape (tuple[int, int], optional) – Shape of the input image. Defaults to (256, 256).
image_threshold (float, optional) – Threshold for image anomaly detection. Defaults to 0.5.
pixel_threshold (float, optional) – Threshold for pixel anomaly detection. Defaults to 0.5.
task (AnomalibTaskType, optional) – Task type for anomaly detection. Defaults to AnomalibTaskType.CLASSIFICATION.
mean_values (tuple[float, float, float], optional) – Mean values for normalization. Defaults to (0.0, 0.0, 0.0).
scale_values (tuple[float, float, float], optional) – Scale values for normalization. Defaults to (1.0, 1.0, 1.0).
normalization_scale (float, optional) – Scale value for normalization. Defaults to 1.0.
via_onnx (bool, optional) – Whether to export the model in OpenVINO format via ONNX first. Defaults to False.
onnx_export_configuration (dict[str, Any] | None, optional) – Configuration for ONNX export. Defaults to None.