API Quick-Guide#
Besides CLI functionality, The OpenVINO™ Training Extension provides APIs that help developers to integrate OpenVINO™ Training Extensions models into their projects. This tutorial intends to show how to create a dataset, model and use all of the CLI functionality through APIs.
For demonstration purposes we will use the Object Detection ATSS model with WGISD public dataset as we did for the CLI tutorial.
Note
To start with we need to install OpenVINO™ Training Extensions.
Dataset preparation#
1. Clone a repository with WGISD dataset.
cd data
git clone https://github.com/thsant/wgisd.git
cd wgisd
git checkout 6910edc5ae3aae8c20062941b1641821f0c30127
2. We need to rename annotations to be distinguished by OpenVINO™ Training Extensions Datumaro manager:
mv data images && mv coco_annotations annotations && mv annotations/train_bbox_instances.json instances_train.json && mv annotations/test_bbox_instances.json instances_val.json
Now it is all set to use this dataset inside OpenVINO™ Training Extensions
Quick Start with auto-configuration#
Once the dataset is ready, we can immediately start training with the model and data pipeline recommended by OpenVINO™ Training Extension through auto-configuration. The following code snippet demonstrates how to use the auto-configuration feature:
from otx.engine import Engine
engine = Engine(data_root="data/wgisd")
engine.train()
Note
If dataset supports multiple Task types, this will default to the Task type detected by OpenVINO™ Training Extension. If you want to specify a specific Task type, you need to specify it like below:
from otx.engine import Engine
engine = Engine(data_root="data/wgisd", task="INSTANCE_SEGMENTATION")
engine.train()
Check Available Model Recipes#
If you want to use other models offered by OpenVINO™ Training Extension besides the ones provided by Auto-Configuration, you can get a list of available models in OpenVINO™ Training Extension as shown below.
from otx.engine.utils.api import list_models
model_lists = list_models(task="DETECTION")
print(model_lists)
'''
[
'yolox_tiny_tile',
'yolox_x',
'yolox_l_tile',
'yolox_x_tile', 'yolox_l',
'atss_r50_fpn',
'ssd_mobilenetv2',
'yolox_s',
'yolox_tiny',
'openvino_model',
'atss_mobilenetv2',
'yolox_s_tile',
'rtmdet_tiny',
'atss_mobilenetv2_tile',
'atss_resnext101',
'ssd_mobilenetv2_tile',
]
'''
from otx.engine.utils.api import list_models
model_lists = list_models(task="DETECTION", print_table=True)
'''
┏━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Task ┃ Model Name ┃ Recipe Path ┃
┡━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ DETECTION │ yolox_tiny │ src/otx/recipe/detection/yolox_tiny.yaml │
│ ... │ │ │
└───────────┴───────────────────────┴────────────────────────────────────────────────────────────────┘
'''
Note
If you’re looking for a specific name, use the pattern argument.
from otx.engine.utils.api import list_models
model_lists = list_models(task="DETECTION", pattern="tile")
print(model_lists)
'''
[
'yolox_tiny_tile',
'ssd_mobilenetv2_tile',
'yolox_l_tile',
'yolox_s_tile',
'yolox_x_tile',
'atss_mobilenetv2_tile',
]
'''
You can also find the available model recipes in YAML form in the folder otx/recipe
.
Engine#
The otx.engine.Engine
class is the main entry point for using OpenVINO™ Training Extensions APIs.
Setting
task
Specify task
. This is the task type for that Engine
usage.
You can set the task by referencing the OTXTaskType
in otx.core.types.task
.
If no task is specified, the task is detected and used via datamodule
or data_root
.
from otx.core.types.task import OTXTaskType
from otx.engine import Engine
engine = Engine(task=OTXTaskType.DETECTION)
# or
engine = Engine(task="DETECTION")
Setting
work_dir
Specify work_dir
. This is the workspace for that Engine
, and where output is stored.
The default value is currently ./otx-workspace
.
from otx.engine import Engine
engine = Engine(work_dir="work_dir")
Setting device
You can set the device by referencing the DeviceType
in otx.core.types.device
.
The current default setting is auto
.
from otx.core.types.device import DeviceType
from otx.engine import Engine
engine = Engine(device=DeviceType.gpu)
# or
engine = Engine(device="gpu")
In addition, the Engine
constructor can be associated with the Trainer’s constructor arguments to control the Trainer’s functionality.
Refer lightning.Trainer.
Using the OpenVINO™ Training Extension configuration we can configure the Engine.
from otx.engine import Engine
recipe = "src/otx/recipe/detection/atss_mobilenetv2.yaml"
engine = Engine.from_config(
config_path=recipe,
data_root="data/wgisd",
work_dir="./otx-workspace",
)
Training#
Create an output model and start actual training:
Below is an example using the
atss_mobilenetv2
model provided by OpenVINO™ Training Extension.
from otx.engine import Engine
engine = Engine(data_root="data/wgisd", model="atss_mobilenetv2")
engine.train()
Alternatively, we can use the configuration file.
from otx.engine import Engine
config = "src/otx/recipe/detection/atss_mobilenetv2.yaml"
engine = Engine.from_config(config_path=config, data_root="data/wgisd")
engine.train()
Note
This can use callbacks provided by OpenVINO™ Training Extension and several training techniques. However, in this case, no arguments are specified for train.
If you want to specify the model, you can do so as shown below:
The model used by the Engine is of type otx.core.model.entity.base.OTXModel
.
from otx.algo.detection.atss import ATSS
from otx.engine import Engine
model = ATSS(label_info=5, variant="mobilenetv2")
engine = Engine(data_root="data/wgisd", model=model)
engine.train()
from otx.algo.detection.atss import ATSS
from otx.engine import Engine
model = ATSS(label_info=5, variant="mobilenetv2")
engine = Engine(data_root="data/wgisd", model=model, checkpoint="<path/to/checkpoint>")
engine.train()
from torch.optim import SGD
from torch.optim.lr_scheduler import CosineAnnealingLR
from otx.algo.detection.atss import ATSS
from otx.engine import Engine
model = ATSS(label_info=5, variant="mobilenetv2")
optimizer = SGD(model.parameters(), lr=0.01, weight_decay=1e-4, momentum=0.9)
scheduler = CosineAnnealingLR(optimizer, T_max=10000, eta_min=0)
engine = Engine(
...,
model=model,
optimizer=optimizer,
scheduler=scheduler,
)
engine.train()
If you want to specify the datamodule, you can do so as shown below:
The datamodule used by the Engine is of type otx.core.data.module.OTXDataModule
.
from otx.core.data.module import OTXDataModule
from otx.engine import Engine
datamodule = OTXDataModule(data_root="data/wgisd")
engine = Engine(datamodule=datamodule)
engine.train()
Note
If both data_root
and datamodule
enter Engine
as input, Engine
uses datamodule as the base.
You can use train-specific arguments with
train()
function.
engine.train(max_epochs=10)
engine.train(seed=1234, deterministic=True)
engine.train(precision="16")
Note
This uses lightning’s precision value. You can use the values below: - “64”, “32”, “16”, “bf16”, - 64, 32, 16
from otx.core.metrics.fmeasure import FMeasure
metric = FMeasue(label_info=5)
engine.train(metric=metric)
from lightning.pytorch.callbacks import EarlyStopping
from lightning.pytorch.loggers.tensorboard import TensorBoardLogger
engine.train(callbacks=[EarlyStopping()], loggers=[TensorBoardLogger()])
In addition, the train()
function can be associated with the Trainer’s constructor arguments to control the Trainer’s functionality.
Refer lightning.Trainer.
For example, if you want to use the limit_val_batches
feature provided by Trainer, you can use it like this:
# disable validation
engine.train(limit_val_batches=0)
It’s also easy to use HPOs.
engine.train(run_hpo=True)
Evaluation#
If the training is already in place, we just need to use the code below:
engine.test()
engine.test(checkpoint="<path/to/checkpoint>")
Note
The format that can enter the checkpoint is of type torch (.ckpt) or exported model (.onnx, .xml).
from otx.core.data.module import OTXDataModule
datamodule = OTXDataModule(data_root="data/wgisd")
engine.test(datamodule=datamodule)
from otx.core.metrics.fmeasure import FMeasure
metric = FMeasue(label_info=5)
engine.test(metric=metric)
Exporting#
To export our model to OpenVINO™ IR format we need to create output model and run exporting task. If the engine is trained, you can proceed with the export using the current engine’s checkpoint:
The default value for export_format
is OPENVINO
.
The default value for export_precision
is FP32
.
engine.export()
engine.export(export_format="ONNX")
engine.export(explain=True)
Note
This ensures that it is exported with a saliency_map
and feature_vector
that will be used in the XAI.
engine.export(checkpoint="<path/to/checkpoint>")
engine.export(export_precision="FP16")
XAI#
To run the XAI with the OpenVINO™ IR model, we need to create an output model and run the XAI procedure:
engine.explain(checkpoint="<path/to/ir/xml>")
from otx.core.data.module import OTXDataModule
datamodule = OTXDataModule(data_root="data/wgisd")
engine.explain(..., datamodule=datamodule)
engine.explain(..., dump=True)
Optimization#
To run the optimization with PTQ on the OpenVINO™ IR model, we need to create an output model and run the optimization procedure:
engine.optimize(checkpoint="<path/to/ir/xml>")
from otx.core.data.module import OTXDataModule
datamodule = OTXDataModule(data_root="data/wgisd")
engine.optimize(..., datamodule=datamodule)
You can validate the optimized model as the usual model. For example for the NNCF model it will look like this:
engine.test(checkpoint="<path/to/optimized/ir/xml>")
Benchmarking#
Engine
allows to perform benchmarking of the trained model, and provide theoretical complexity information in case of torch model.
The estimated by Engine.benchmark()
performance may differ from the performance of the deployed model, since the measurements are conducted
via OTX inference API, which can introduce additional burden.
engine.benchmark()
engine.benchmark(checkpoint="<path/to/exported_model.xml>")
Note
Specifying a checkpoint only makes sense for OpenVINO™ IR models.
Conclusion#
That’s it! Now, we can use OpenVINO™ Training Extensions APIs to create, train, and deploy deep learning models using the OpenVINO™ Training Extensions.