otx.core.model.visual_prompting#
Class definition for visual prompting models entity used in OTX.
Classes
|
Base class for the visual prompting models used in OTX. |
|
Visual prompting model compatible for OpenVINO IR inference. |
- class otx.core.model.visual_prompting.OTXVisualPromptingModel(label_info: LabelInfoTypes = NullLabelInfo(label_names=[], label_ids=[], label_groups=[[]]), input_size: tuple[int, int] = (1024, 1024), optimizer: OptimizerCallable = <function _default_optimizer_callable>, scheduler: LRSchedulerCallable | LRSchedulerListCallable = <function _default_scheduler_callable>, metric: MetricCallable = <function _visual_prompting_metric_callable>, torch_compile: bool = False)[source]#
Bases:
OTXModel
Base class for the visual prompting models used in OTX.
- get_dummy_input(batch_size: int = 1) VisualPromptingBatchDataEntity [source]#
Returns a dummy input for VPT model.
- test_step(inputs: VisualPromptingBatchDataEntity, batch_idx: int) None [source]#
Perform a single test step on a batch of data from the test set.
- class otx.core.model.visual_prompting.OVVisualPromptingModel(model_name: str, model_type: str = 'Visual_Prompting', async_inference: bool = False, max_num_requests: int | None = None, use_throughput_mode: bool = False, model_api_configuration: dict[str, Any] | None = None, metric: MetricCallable = <function _visual_prompting_metric_callable>, **kwargs)[source]#
Bases:
OVModel
Visual prompting model compatible for OpenVINO IR inference.
- It can only consume OpenVINO IR model path and create the OTX visual prompting model compatible
for OTX testing pipeline.
- forward(inputs: VisualPromptingBatchDataEntity) VisualPromptingBatchPredEntity [source]#
Model forward function.
- get_dummy_input(batch_size: int = 1) VisualPromptingBatchDataEntity [source]#
Returns a dummy input for classification OV model.
- optimize(output_dir: Path, data_module: OTXDataModule, ptq_config: dict[str, Any] | None = None) dict[str, Path] [source]#
Runs NNCF quantization.
- test_step(inputs: VisualPromptingBatchDataEntity, batch_idx: int) None [source]#
Perform a single test step on a batch of data from the test set.