otx.algo.object_detection_3d.backbones.monodetr_resnet#
MonoDetr backbone implementations.
Classes
|
ResNet backbone with frozen BatchNorm. |
|
BackboneBase module. |
|
DepthAwareTransformerBuilder. |
|
Joiner module. |
- class otx.algo.object_detection_3d.backbones.monodetr_resnet.Backbone(name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool, **kwargs)[source]#
Bases:
BackboneBase
ResNet backbone with frozen BatchNorm.
Initializes Backbone module.
- class otx.algo.object_detection_3d.backbones.monodetr_resnet.BackboneBase(backbone: Module, train_backbone: bool, return_interm_layers: bool)[source]#
Bases:
Module
BackboneBase module.
Initializes BackboneBase module.
- forward(images: Tensor) dict[str, NestedTensor] [source]#
Forward pass of the BackboneBase module.
- Parameters:
images (torch.Tensor) – Input images.
- Returns:
Output tensors.
- Return type:
- class otx.algo.object_detection_3d.backbones.monodetr_resnet.BackboneBuilder(model_name: str)[source]#
Bases:
object
DepthAwareTransformerBuilder.
Constructor for Backbone MonoDetr.
- class otx.algo.object_detection_3d.backbones.monodetr_resnet.Joiner(backbone: Module, position_embedding: PositionEmbeddingSine)[source]#
Bases:
Sequential
Joiner module.
Initialize the Joiner module.
- Parameters:
backbone (nn.Module) – The backbone module.
position_embedding (PositionEmbeddingSine) – The position embedding module.
- forward(images: Tensor) tuple[list[NestedTensor], list[Tensor]] [source]#
Forward pass of the Joiner module.
- Parameters:
images (torch.Tensor) – Input images.
- Returns:
Output tensors and position embeddings.
- Return type:
tuple[List[NestedTensor], List[torch.Tensor]]