otx.core.model.detection_3d#
Class definition for 3d object detection model entity used in OTX.
Classes
|
A wrapper for MonoDETR 3d object detection model. |
|
Base class for the 3d detection models used in OTX. |
|
3d detection model compatible for OpenVINO IR inference. |
- class otx.core.model.detection_3d.MonoDETRModel(inference_adapter: InferenceAdapter, configuration: dict[str, Any], preload: bool = False)[source]#
Bases:
ImageModel
A wrapper for MonoDETR 3d object detection model.
Initializes a 3d detection model.
- Parameters:
- postprocess(outputs: dict[str, ndarray], meta: dict[str, Any]) dict[str, Any] [source]#
Applies SCC decoded to the model outputs.
- class otx.core.model.detection_3d.OTX3DDetectionModel(label_info: LabelInfoTypes, model_name: str, input_size: tuple[int, int], optimizer: OptimizerCallable = <function _default_optimizer_callable>, scheduler: LRSchedulerCallable | LRSchedulerListCallable = <function _default_scheduler_callable>, metric: MetricCallable = <class 'otx.core.metrics.average_precision_3d.KittiMetric'>, torch_compile: bool = False, score_threshold: float = 0.1)[source]#
Bases:
OTXModel
[Det3DBatchDataEntity
,Det3DBatchPredEntity
]Base class for the 3d detection models used in OTX.
Initialize the 3d detection model.
- static decode_detections_for_kitti_format(dets: ndarray, img_size: ndarray, calib_matrix: list[ndarray], class_names: list[str], threshold: float = 0.2) list[dict[str, ndarray]] [source]#
Decode the detection results for KITTI format.
- class otx.core.model.detection_3d.OV3DDetectionModel(model_name: str, model_type: str = 'mono_3d_det', async_inference: bool = True, max_num_requests: int | None = None, use_throughput_mode: bool = True, model_api_configuration: dict[str, Any] | None = None, metric: MetricCallable = <class 'otx.core.metrics.average_precision_3d.KittiMetric'>, score_threshold: float = 0.2, **kwargs)[source]#
Bases:
OVModel
[Det3DBatchDataEntity
,Det3DBatchPredEntity
]3d detection model compatible for OpenVINO IR inference.
It can consume OpenVINO IR model path or model name from Intel OMZ repository and create the OTX 3d detection model compatible for OTX testing pipeline.
- static extract_dets_from_outputs(outputs: dict[str, Tensor], topk: int = 50) tuple[Tensor, ...] [source]#
Extract detection results from model outputs.