ADE20k (v2017)#
Format explanation#
The original ADE20K 2017 dataset is available here.
The consistency set (for checking the annotation consistency) is available here.
Supported annotation types:
Masks
Supported annotation attributes:
occluded
(boolean): whether the object is occluded by another objectother arbitrary boolean attributes, which can be specified in the annotation file
<image_name>_atr.txt
Import ADE20K 2017 dataset#
A Datumaro project with an ADE20k source can be created in the following way:
datum project create
datum project import --format ade20k2017 <path/to/dataset>
It is also possible to import the dataset using Python API:
import datumaro as dm
ade20k_dataset = dm.Dataset.import_from('<path/to/dataset>', 'ade20k2017')
ADE20K dataset directory should have the following structure:
dataset/
├── dataset_meta.json # a list of non-format labels (optional)
├── subset1/
│ └── super_label_1/
│ ├── img1.jpg
│ ├── img1_atr.txt
│ ├── img1_parts_1.png
│ ├── img1_seg.png
│ ├── img2.jpg
│ ├── img2_atr.txt
│ └── ...
└── subset2/
├── img3.jpg
├── img3_atr.txt
├── img3_parts_1.png
├── img3_parts_2.png
├── img4.jpg
├── img4_atr.txt
├── img4_seg.png
└── ...
The mask images <image_name>_seg.png
contain information about the object
class segmentation masks and also separate each class into instances.
The channels R and G encode the objects class masks.
The channel B encodes the instance object masks.
The mask images <image_name>_parts_N.png
contain segmentation masks for parts
of objects, where N is a number indicating the level in the part hierarchy.
The annotation files <image_name>_atr.txt
describe the content of each
image. Each line in the text file contains:
column 1: instance number,
column 2: part level (0 for objects),
column 3: occluded (1 for true),
column 4: original raw name (might provide a more detailed categorization),
column 5: class name (parsed using wordnet),
column 6: double-quoted list of attributes, separated by commas. Each column is separated by a
#
. See example of dataset here.
To add custom classes, you can use dataset_meta.json
.
Export to other formats#
Datumaro can convert an ADE20K dataset into any other format Datumaro supports. To get the expected result, convert the dataset to a format that supports segmentation masks.
There are several ways to convert an ADE20k 2017 dataset to other dataset formats using CLI:
datum project create
datum project import -f ade20k2017 <path/to/dataset>
datum project export -f coco -o <output/dir> -- --save-media
or
datum convert -if ade20k2017 -i <path/to/dataset> \
-f coco -o <output/dir> -- --save-media
Or, using Python API:
import datumaro as dm
dataset = dm.Dataset.import_from('<path/to/dataset>', 'ade202017')
dataset.export('save_dir', 'coco')
Examples#
Examples of using this format from the code can be found in the format tests