BraTS Numpy#
Format specification#
The original BraTS dataset is available here.
Supported annotation types:
Mask
Cuboid3d
Import BraTS Numpy dataset#
A Datumaro project with a BraTS Numpy source can be created in the following way:
datum project create
datum project import --format brats_numpy <path/to/dataset>
It is also possible to import the dataset using Python API:
from datumaro.components.dataset import Dataset
brats_dataset = Dataset.import_from('<path/to/dataset>', 'brats_numpy')
BraTS Numpy dataset directory should have the following structure:
dataset/
├── <img1>_data_cropped.npy
├── <img1>_label_cropped.npy
├── <img2>_data_cropped.npy
├── <img2>_label_cropped.npy
├── ...
├── labels
├── val_brain_bbox.p
└── val_ids.p
The data in Datumaro is stored as multi-frame images (set of 2D images).
Annotated images are stored as masks for each 2d image separately
with an image_id
attribute.
Export to other formats#
Datumaro can convert a BraTS Numpy dataset into any other format Datumaro supports. To get the expected result, convert the dataset to a format that supports segmentation masks or cuboids.
There are several ways to convert a BraTS Numpy dataset to other dataset formats using CLI:
datum project create
datum project import -f brats_numpy <path/to/dataset>
datum project export -f voc -o <output/dir> -- --save-media
or
datum convert -if brats_numpy -i <path/to/dataset> \
-f voc -o <output/dir> -- --save-media
Or, using Python API:
from datumaro.components.dataset import Dataset
dataset = Dataset.import_from('<path/to/dataset>', 'brats_numpy')
dataset.export('save_dir', 'voc')
Examples#
Examples of using this format from the code can be found in the format tests