Tabular#
Format specification#
Tabular dataset generally refers to table data with multiple rows and columns.
.csv
files are the most common format, and OpenML uses .arff
as the official format.
Datumaro only supports tabular data in .csv
format where the first row is a header with unique column names.
It’s because other formats can be converted to .csv
easily as shown below.
# convert '.arff' to '.csv'
from scipy.io.arff import loadarff
import pandas as pd
data = loadarff("dataset.arff")
df = pd.DataFrame(data[0])
categorical = [col for col in df.columns if df[col].dtype=="O"]
df[categorical] = df[categorical_columns].apply(lambda x: x.str.decode('utf8'))
df.to_csv("arff.csv", index=False)
# convert '.parquet', '.feather', '.hdf5', '.pickle' to '.csv'.
pd.read_parquet("dataset.parquet").to_csv('parquet.csv', index=False)
pd.read_feather("dataset.feather").to_csv('feather.csv', index=False)
pd.read_hdf("dataset.hdf5").to_csv('hdf5.csv', index=False)
pd.read_pickle("dataset.pickle").to_csv('pickle.csv', index=False)
# convert '.jay' to '.csv'
import datatable as dt
data = dt.fread("dataset.jay")
data.to_csv("jay.csv")
A tabular dataset can be one of the following:
a single file with a
.csv
extensiona directory contains
.csv
files (supports only 1 depth).dataset/ ├── aaa.csv ├── ... └── zzz.csv
Supported annotation types:
Tabular
Import tabular dataset#
A Datumaro project with a tabular source can be created in the following way:
datum project create
datum project import --format tabular <path/to/dataset>
It is also possible to import the dataset using Python API:
import datumaro as dm
dataset = dm.Dataset.import_from('<path/to/dataset>', 'tabular')
Datumaro stores the imported table as media (a list of TableRow
) and annotates the target columns.
The last column is regarded as the target column,
which can be specified by the user when importing the dataset as shown below.
datum project create
datum project import --format tabular <path/to/buddy/dataset> -- --target input:length(m),output:breed_category,pet_category
datum project import --format tabular <path/to/electricity/dataset>
import datumaro as dm
dataset = dm.Dataset.import_from('<path/to/buddy/dataset>', 'tabular', target={"input":"length(m)", "output":["breed_category", "pet_category"]})
dataset = dm.Dataset.import_from('<path/to/electricity/dataset>', 'tabular')
As shown, the target can be a single column name or a comma-separated list of columns.
Note that each tabular file is considered as a subset.
Export tabular dataset#
Datumaro supports exporting a tabular dataset using CLI or python API.
Each subset will be saved to a separate .csv
file.
datum project create
datum project import -f tabular <path/to/dataset>
datum project export -f tabular -o <output/dir>
import datumaro as dm
dataset = dm.Dataset.import_from('<path/to/dataset>', 'tabular')
dataset.export('<path/to/output/dir>', 'tabular')
Note that converting a tabular dataset into other formats and vice versa is not supproted.
Examples#
Examples of using this format from the code can be found in the format tests. The datasets here are randomly sampled and you can find the full dataset below.
Electricity Datset: https://www.openml.org/d/44156
date
day
period
nswprice
nswdemand
vicprice
vicdemand
transfer
class
0.425556
5
0.340426
0.076108
0.392889
0.003467
0.422915
0.414912
UP
0.425512
4
0.617021
0.060376
0.483041
0.003467
0.422915
0.414912
DOWN
0.013982
4
0.042553
0.061967
0.521125
0.003467
0.422915
0.414912
DOWN
0.907349
3
0.06383
0.080581
0.331003
0.00538
0.47566
0.441228
DOWN
0.889341
0
0.361702
0.027141
0.379649
0.001624
0.248317
0.69386
DOWN
Buddy Dataset: https://www.kaggle.com/datasets/akash14/adopt-a-buddy
pet_id
issue_date
listing_date
condition
color_type
length(m)
height(cm)
X1
X2
breed_category
pet_category
ANSL_59957
2015-10-21 00:00:00
2016-11-12 09:00:00
nan
Lynx Point
0.49
24.53
16
9
2
1
ANSL_57687
2016-08-25 00:00:00
2016-09-20 08:11:00
nan
Red
0.87
43.17
15
4
2
4
ANSL_62277
2014-12-29 00:00:00
2017-01-19 14:47:00
nan
Brown
0.81
25.72
15
4
2
4
ANSL_72624
2016-10-30 00:00:00
2017-02-18 14:57:00
1
Brown Tabby
0.36
10.18
0
1
0
1
ANSL_51838
2014-12-29 00:00:00
2017-01-19 14:46:00
nan
Brown
0.97
48.7
15
4
2
4