Tabular#

Format specification#

Tabular dataset generally refers to table data with multiple rows and columns.
.csv files are the most common format, and OpenML uses .arff as the official format.

Datumaro only supports tabular data in .csv format where the first row is a header with unique column names. It’s because other formats can be converted to .csv easily as shown below.

# convert '.arff' to '.csv'
from scipy.io.arff import loadarff
import pandas as pd
data = loadarff("dataset.arff")
df = pd.DataFrame(data[0])
categorical = [col for col in df.columns if df[col].dtype=="O"]
df[categorical] = df[categorical_columns].apply(lambda x: x.str.decode('utf8'))
df.to_csv("arff.csv", index=False)

# convert '.parquet', '.feather', '.hdf5', '.pickle' to '.csv'.
pd.read_parquet("dataset.parquet").to_csv('parquet.csv', index=False)
pd.read_feather("dataset.feather").to_csv('feather.csv', index=False)
pd.read_hdf("dataset.hdf5").to_csv('hdf5.csv', index=False)
pd.read_pickle("dataset.pickle").to_csv('pickle.csv', index=False)

# convert '.jay' to '.csv'
import datatable as dt
data = dt.fread("dataset.jay")
data.to_csv("jay.csv")

A tabular dataset can be one of the following:

  • a single file with a .csv extension

  • a directory contains .csv files (supports only 1 depth).

    dataset/
    ├── aaa.csv
    ├── ...
    └── zzz.csv
    

Supported annotation types:

  • Tabular

Import tabular dataset#

A Datumaro project with a tabular source can be created in the following way:

datum project create
datum project import --format tabular <path/to/dataset>

It is also possible to import the dataset using Python API:

import datumaro as dm
dataset = dm.Dataset.import_from('<path/to/dataset>', 'tabular')

Datumaro stores the imported table as media (a list of TableRow) and annotates the target columns. The last column is regarded as the target column, which can be specified by the user when importing the dataset as shown below.

datum project create
datum project import --format tabular <path/to/buddy/dataset> -- --target input:length(m),output:breed_category,pet_category
datum project import --format tabular <path/to/electricity/dataset>
import datumaro as dm
dataset = dm.Dataset.import_from('<path/to/buddy/dataset>', 'tabular', target={"input":"length(m)", "output":["breed_category", "pet_category"]})
dataset = dm.Dataset.import_from('<path/to/electricity/dataset>', 'tabular')

As shown, the target can be a single column name or a comma-separated list of columns.

Note that each tabular file is considered as a subset.

Export tabular dataset#

Datumaro supports exporting a tabular dataset using CLI or python API. Each subset will be saved to a separate .csv file.

datum project create
datum project import -f tabular <path/to/dataset>
datum project export -f tabular -o <output/dir>
import datumaro as dm
dataset = dm.Dataset.import_from('<path/to/dataset>', 'tabular')
dataset.export('<path/to/output/dir>', 'tabular')

Note that converting a tabular dataset into other formats and vice versa is not supproted.

Examples#

Examples of using this format from the code can be found in the format tests. The datasets here are randomly sampled and you can find the full dataset below.

  • Electricity Datset: https://www.openml.org/d/44156

    date

    day

    period

    nswprice

    nswdemand

    vicprice

    vicdemand

    transfer

    class

    0.425556

    5

    0.340426

    0.076108

    0.392889

    0.003467

    0.422915

    0.414912

    UP

    0.425512

    4

    0.617021

    0.060376

    0.483041

    0.003467

    0.422915

    0.414912

    DOWN

    0.013982

    4

    0.042553

    0.061967

    0.521125

    0.003467

    0.422915

    0.414912

    DOWN

    0.907349

    3

    0.06383

    0.080581

    0.331003

    0.00538

    0.47566

    0.441228

    DOWN

    0.889341

    0

    0.361702

    0.027141

    0.379649

    0.001624

    0.248317

    0.69386

    DOWN

  • Buddy Dataset: https://www.kaggle.com/datasets/akash14/adopt-a-buddy

    pet_id

    issue_date

    listing_date

    condition

    color_type

    length(m)

    height(cm)

    X1

    X2

    breed_category

    pet_category

    ANSL_59957

    2015-10-21 00:00:00

    2016-11-12 09:00:00

    nan

    Lynx Point

    0.49

    24.53

    16

    9

    2

    1

    ANSL_57687

    2016-08-25 00:00:00

    2016-09-20 08:11:00

    nan

    Red

    0.87

    43.17

    15

    4

    2

    4

    ANSL_62277

    2014-12-29 00:00:00

    2017-01-19 14:47:00

    nan

    Brown

    0.81

    25.72

    15

    4

    2

    4

    ANSL_72624

    2016-10-30 00:00:00

    2017-02-18 14:57:00

    1

    Brown Tabby

    0.36

    10.18

    0

    1

    0

    1

    ANSL_51838

    2014-12-29 00:00:00

    2017-01-19 14:46:00

    nan

    Brown

    0.97

    48.7

    15

    4

    2

    4