KITTI#

Format specification#

The KITTI dataset has many annotations for different tasks. Datumaro supports only a few of them.

Supported tasks / formats:

  • Object Detection - kitti_detection The format specification is available in README.md here.

  • Segmentation - kitti_segmentation The format specification is available in README.md here.

  • Raw 3D / Velodyne Points - described here

Supported annotation types:

  • Bbox (object detection)

  • Mask (segmentation)

Supported annotation attributes:

  • truncated (boolean) - indicates that the bounding box specified for the object does not correspond to the full extent of the object

  • occluded (boolean) - indicates that a significant portion of the object within the bounding box is occluded by another object

  • score (float) - indicates confidence in detection

Import KITTI dataset#

The KITTI left color images for object detection are available here. The KITTI object detection labels are available here. The KITTI segmentation dataset is available here.

A Datumaro project with a KITTI source can be created in the following way:

datum project create
datum project import --format kitti <path/to/dataset>

It is possible to specify project name and project directory. Run datum project create --help for more information.

KITTI detection dataset directory should have the following structure:

└─ Dataset/
    ├── testing/
    │   └── image_2/
    │       ├── <name_1>.<img_ext>
    │       ├── <name_2>.<img_ext>
    │       └── ...
    └── training/
        ├── image_2/ # left color camera images
        │   ├── <name_1>.<img_ext>
        │   ├── <name_2>.<img_ext>
        │   └── ...
        └─── label_2/ # left color camera label files
            ├── <name_1>.txt
            ├── <name_2>.txt
            └── ...

KITTI segmentation dataset directory should have the following structure:

└─ Dataset/
    ├── dataset_meta.json # a list of non-format labels (optional)
    ├── label_colors.txt # optional, color map for non-original segmentation labels
    ├── testing/
    │   └── image_2/
    │       ├── <name_1>.<img_ext>
    │       ├── <name_2>.<img_ext>
    │       └── ...
    └── training/
        ├── image_2/ # left color camera images
        │   ├── <name_1>.<img_ext>
        │   ├── <name_2>.<img_ext>
        │   └── ...
        ├── label_2/ # left color camera label files
        │   ├── <name_1>.txt
        │   ├── <name_2>.txt
        │   └── ...
        ├── instance/ # instance segmentation masks
        │   ├── <name_1>.png
        │   ├── <name_2>.png
        │   └── ...
        ├── semantic/ # semantic segmentation masks (labels are encoded by its id)
        │   ├── <name_1>.png
        │   ├── <name_2>.png
        │   └── ...
        └── semantic_rgb/ # semantic segmentation masks (labels are encoded by its color)
            ├── <name_1>.png
            ├── <name_2>.png
            └── ...

To add custom classes, you can use dataset_meta.json and label_colors.txt. If the dataset_meta.json is not represented in the dataset, then label_colors.txt will be imported if possible.

You can import a dataset for specific tasks of KITTI dataset instead of the whole dataset, for example:

datum project import --format kitti_detection <path/to/dataset>

To make sure that the selected dataset has been added to the project, you can run datum project info, which will display the project information.

Export to other formats#

Datumaro can convert a KITTI dataset into any other format Datumaro supports.

Such conversion will only be successful if the output format can represent the type of dataset you want to convert, e.g. segmentation annotations can be saved in Cityscapes format, but not as COCO keypoints.

There are several ways to convert a KITTI dataset to other dataset formats:

datum project create
datum project import -f kitti <path/to/kitti>
datum project export -f cityscapes -o <output/dir>

or

datum convert -if kitti -i <path/to/kitti> -f cityscapes -o <output/dir>

Or, using Python API:

import datumaro as dm

dataset = dm.Dataset.import_from('<path/to/dataset>', 'kitti')
dataset.export('save_dir', 'cityscapes', save_media=True)

Export to KITTI#

There are several ways to convert a dataset to KITTI format:

# export dataset into KITTI format from existing project
datum project export -p <path/to/project> -f kitti -o <output/dir> \
    -- --save-media
# converting to KITTI format from other format
datum convert -if cityscapes -i <path/to/dataset> \
    -f kitti -o <output/dir> -- --save-media

Extra options for exporting to KITTI format:

  • --save-media allow to export dataset with saving media files (by default False)

  • --image-ext IMAGE_EXT allow to specify image extension for exporting dataset (by default - keep original or use .png, if none)

  • --save-dataset-meta - allow to export dataset with saving dataset meta file (by default False)

  • --apply-colormap APPLY_COLORMAP allow to use colormap for class masks (in folder semantic_rgb, by default True)

  • --label_map allow to define a custom colormap. Example:

# mycolormap.txt :
# 0 0 255 sky
# 255 0 0 person
#...
datum project export -f kitti -- --label-map mycolormap.txt

or you can use original kitti colomap:

datum project export -f kitti -- --label-map kitti
  • --tasks TASKS allow to specify tasks for export dataset, by default Datumaro uses all tasks. Example:

datum project export -f kitti -- --tasks detection
  • --allow-attributes ALLOW_ATTRIBUTES allow export of attributes (by default True).

Examples#

Datumaro supports filtering, transformation, merging etc. for all formats and for the KITTI format in particular. Follow the user manual to get more information about these operations.

There are several examples of using Datumaro operations to solve particular problems with KITTI dataset:

Example 1. How to load an original KITTI dataset and convert to Cityscapes#

datum project create -o project
datum project import -p project -f kitti ./KITTI/
datum stats -p project
datum project export -p project -f cityscapes -- --save-media

Example 2. How to create a custom KITTI-like dataset#

import numpy as np
import datumaro as dm

import datumaro.plugins.kitti_format as KITTI

label_map = {}
label_map['background'] = (0, 0, 0)
label_map['label_1'] = (1, 2, 3)
label_map['label_2'] = (3, 2, 1)
categories = KITTI.make_kitti_categories(label_map)

dataset = dm.Dataset.from_iterable([
  dm.DatasetItem(id=1,
    image=np.ones((1, 5, 3)),
    annotations=[
      dm.Mask(image=np.array([[1, 0, 0, 1, 1]]), label=1, id=0,
        attributes={'is_crowd': False}),
      dm.Mask(image=np.array([[0, 1, 1, 0, 0]]), label=2, id=0,
        attributes={'is_crowd': False}),
    ]
  ),
], categories=categories)

dataset.export('./dataset', format='kitti')

Examples of using this format from the code can be found in the format tests