MPII Human Pose JSON#
Format specification#
The original MPII Human Pose Dataset is available here.
Supported annotation types:
Bbox
Points
Supported attributes:
center
(a list with two coordinates of the center point of the object)scale
(float)
Import MPII Human Pose Dataset (JSON)#
A Datumaro project with an MPII Human Pose Dataset (JSON) source can be created in the following way:
datum project create
datum project import --format mpii_json <path/to/dataset>
It is also possible to import the dataset using Python API:
import datumaro as dm
mpii_dataset = dm.Dataset.import_from('<path/to/dataset>', 'mpii_json')
MPII Human Pose Dataset (JSON) directory should have the following structure:
dataset/
├── jnt_visible.npy # optional
├── mpii_annotations.json
├── mpii_headboxes.npy # optional
├── mpii_pos_gt.npy # optional
├── 000000001.jpg
├── 000000002.jpg
├── 000000003.jpg
└── ...
Export to other formats#
Datumaro can convert an MPII Human Pose Dataset (JSON) into any other format Datumaro supports. To get the expected result, convert the dataset to a format that supports bounding boxes or points.
There are several ways to convert an MPII Human Pose Dataset (JSON) to other dataset formats using CLI:
datum project create
datum project import -f mpii_json <path/to/dataset>
datum project export -f voc -o ./save_dir -- --save-media
or
datum convert -if mpii_json -i <path/to/dataset> \
-f voc -o <output/dir> -- --save-media
Or, using Python API:
import datumaro as dm
dataset = dm.Dataset.import_from('<path/to/dataset>', 'mpii_json')
dataset.export('save_dir', 'voc')
Examples#
Examples of using this format from the code can be found in the format tests