ADE20k (v2020)#

Format explanation#

The original ADE20K 2020 dataset is available here.

The consistency set (for checking the annotation consistency) is available here.

Supported annotation types:

  • Masks

Supported annotation attributes:

  • occluded (boolean): whether the object is occluded by another object

  • other arbitrary boolean attributes, which can be specified in the annotation file <image_name>.json

Import ADE20K dataset#

A Datumaro project with an ADE20k source can be created in the following way:

datum project create
datum project import --format ade20k2020 <path/to/dataset>

It is also possible to import the dataset using Python API:

import datumaro as dm

ade20k_dataset = dm.Dataset.import_from('<path/to/dataset>', 'ade20k2020')

ADE20K dataset directory should have the following structure:

dataset/
├── dataset_meta.json # a list of non-format labels (optional)
├── subset1/
│   ├── img1/  # directory with instance masks for img1
│   |    ├── instance_001_img1.png
│   |    ├── instance_002_img1.png
│   |    └── ...
│   ├── img1.jpg
│   ├── img1.json
│   ├── img1_seg.png
│   ├── img1_parts_1.png
│   |
│   ├── img2/  # directory with instance masks for img2
│   |    ├── instance_001_img2.png
│   |    ├── instance_002_img2.png
│   |    └── ...
│   ├── img2.jpg
│   ├── img2.json
│   └── ...
│
└── subset2/
    ├── super_label_1/
    |   ├── img3/  # directory with instance masks for img3
    |   |    ├── instance_001_img3.png
    |   |    ├── instance_002_img3.png
    |   |    └── ...
    |   ├── img3.jpg
    |   ├── img3.json
    |   ├── img3_seg.png
    |   ├── img3_parts_1.png
    |   └── ...
    |
    ├── img4/  # directory with instance masks for img4
    |   ├── instance_001_img4.png
    |   ├── instance_002_img4.png
    |   └── ...
    ├── img4.jpg
    ├── img4.json
    ├── img4_seg.png
    └── ...

The mask images <image_name>_seg.png contain information about the object class segmentation masks and also separate each class into instances. The channels R and G encode the objects class masks. The channel B encodes the instance object masks.

The mask images <image_name>_parts_N.png contain segmentation masks for parts of objects, where N is a number indicating the level in the part hierarchy.

The <image_name> directory contains instance masks for each object in the image, these masks represent one-channel images, each pixel of which indicates an affinity to a specific object.

The annotation files <image_name>.json describe the content of each image. See our tests asset for example of this file, or check ADE20K toolkit for it.

To add custom classes, you can use dataset_meta.json.

Export to other formats#

Datumaro can convert an ADE20K dataset into any other format Datumaro supports. To get the expected result, convert the dataset to a format that supports segmentation masks.

There are several ways to convert an ADE20k dataset to other dataset formats using CLI:

datum project create
datum project import -f ade20k2020 <path/to/dataset>
datum project export -f coco -o ./save_dir -- --save-media

or

datum convert -if ade20k2020 -i <path/to/dataset> \
    -f coco -o <output/dir> -- --save-media

Or, using Python API:

import datumaro as dm

dataset = dm.Dataset.import_from('<path/to/dataset>', 'ade20k2020')
dataset.export('save_dir', 'voc')

Examples#

Examples of using this format from the code can be found in the format tests